java 中锁你知道哪些?请手写一个自旋锁?

1 公平和非公平锁

1.1 是什么

  • 公平锁:是指多个线程按照申请的顺序来获取锁
  • 非公平锁:是指多个线程获取锁的顺序并不是按照申请锁的顺序,有可能后申请的线程比先申请的线程优先获取锁,在高并发的情况下,可能会造成优先级翻转或者饥饿现象

1.2 两者区别

  • 公平锁:在并发环境中,每一个线程在获取锁时会先查看此锁维护的等待队列,如果为空,或者当前线程是等待队列的第一个就占有锁,否则就会加入到等待队列中,以后会按照 FIFO 的规则获取锁
  • 非公平锁:一上来就尝试占有锁,如果失败再进行排队

2 可重入锁和不可重入锁

2.1 是什么

  • 可重入锁:同一个线程在外层方法获取锁之后,进入内层方法会自动获得该锁
  • 不可重入锁: 所谓不可重入锁,即若当前线程执行某个方法已经获取了该锁,那么在方法中尝试再次获取锁时,就会因获取不到而被阻塞

2.2 代码实现可重入锁

  1. public class ReentrantLock {
  2. boolean isLocked = false;
  3. Thread lockedBy = null;
  4. int lockedCount = 0;
  5. public synchronized void lock() throws InterruptedException {
  6. Thread thread = Thread.currentThread();
  7. while (isLocked && lockedBy != thread) {
  8. wait();
  9. }
  10. isLocked = true;
  11. lockedCount++;
  12. lockedBy = thread;
  13. }
  14. public synchronized void unlock() {
  15. if (Thread.currentThread() == lockedBy) {
  16. lockedCount--;
  17. if (lockedCount == 0) {
  18. isLocked = false;
  19. lockedBy = null;
  20. notify();
  21. }
  22. }
  23. }
  24. }
  • 测试
  1. class Data{
  2. ReentrantLock lock = new ReentrantLock();
  3. public void method1() {
  4. lock.lock();
  5. System.out.println(Thread.currentThread().getName() + "\t method1 in");
  6. method2();
  7. System.out.println(Thread.currentThread().getName() + "\t method1 out");
  8. lock.unlock();
  9. }
  10. public void method2() {
  11. lock.lock();
  12. System.out.println(Thread.currentThread().getName() + "\t method2 in");
  13. System.out.println(Thread.currentThread().getName() + "\t method2 out");
  14. lock.unlock();
  15. }
  16. }
  17. public class ReentrantLockDemo {
  18. public static void main(String[] args) {
  19. Data data = new Data();
  20. ExecutorService executorService = Executors.newFixedThreadPool(2);
  21. for(int i = 0; i < 2; i++) {
  22. executorService.execute(()->{
  23. data.method1();
  24. });
  25. }
  26. }
  27. }
  1. 我们设计两个线程调用 method1() 方法,第一个线程调用 method1() 方法获取锁,进入 lock() 方法,由于初始 lockedBy null,所以不会进入 while 而挂起当前线程,而是增加 lockedCount 并记录 lockBy 为第一个线程。接着第一个线程进入 method2() 方法,由于同一进程,所以不会进入 while 而挂起,接着增加 lockedCount,当第二个线程尝试lock,由于 isLocked=true,所以他不会获取该锁,直到第一个线程调用两次 unlock() lockCount 递减为0,才将标记为 isLocked 设置为 false

2.3 代码实现不可重入锁

  1. class NotReentrantLock{
  2. boolean locked = false;
  3. Thread lockedBy = null;
  4. public synchronized void lock() {
  5. Thread thread = Thread.currentThread();
  6. while(locked == true) {
  7. try {
  8. this.wait();
  9. } catch (InterruptedException e) {
  10. e.printStackTrace();
  11. }
  12. }
  13. locked = true;
  14. lockedBy = thread;
  15. }
  16. public synchronized void unlock() {
  17. Thread thread = Thread.currentThread();
  18. if(lockedBy == thread) {
  19. locked = false;
  20. lockedBy = null;
  21. this.notify();
  22. }
  23. }
  24. }
  • 测试
  1. class Data{
  2. NotReentrantLock lock = new NotReentrantLock();
  3. public void method1() {
  4. lock.lock();
  5. System.out.println(Thread.currentThread().getName() + "\t method1 in");
  6. method2();
  7. System.out.println(Thread.currentThread().getName() + "\t method1 out");
  8. lock.unlock();
  9. }
  10. public void method2() {
  11. lock.lock();
  12. System.out.println(Thread.currentThread().getName() + "\t method2 in");
  13. System.out.println(Thread.currentThread().getName() + "\t method2 out");
  14. lock.unlock();
  15. }
  16. }
  17. public class NotReentrantLockDemo {
  18. public static void main(String[] args) {
  19. Data data = new Data();
  20. data.method1();
  21. }
  22. }
  1. 当前线程执行method1方法首先获取lock,接下来执行method2()方法就无法获取锁。这个例子很好的说明了不可重入锁。

2.4 synchronized 和 ReentrantLock 都是可重入锁

  • synchronzied
  1. public class SynchronziedDemo {
  2. private synchronized void print() {
  3. doAdd();
  4. }
  5. private synchronized void doAdd() {
  6. System.out.println("doAdd...");
  7. }
  8. public static void main(String[] args) {
  9. SynchronziedDemo synchronziedDemo = new SynchronziedDemo();
  10. synchronziedDemo.print(); // doAdd...
  11. }
  12. }
  1. 上面可以说明 synchronized 是可重入锁。
  • ReentrantLock
  1. public class ReentrantLockDemo {
  2. private Lock lock = new ReentrantLock();
  3. private void print() {
  4. lock.lock();
  5. doAdd();
  6. lock.unlock();
  7. }
  8. private void doAdd() {
  9. lock.lock();
  10. lock.lock();
  11. System.out.println("doAdd...");
  12. lock.unlock();
  13. lock.unlock();
  14. }
  15. public static void main(String[] args) {
  16. ReentrantLockDemo reentrantLockDemo = new ReentrantLockDemo();
  17. reentrantLockDemo.print();
  18. }
  19. }
  1. 上面例子可以说明 ReentrantLock 是可重入锁,而且在 doAdd 方法中加两次锁和解两次锁也可以。

2.5 synchronized 和 ReentrantLock 有什么区别?

  • 原始结构
    • synchronized是关键字属于JVM层面,反映在字节码上是monitorentermonitorexit,其底层是通过monitor对象来完成,其实wait/notify等方法也是依赖monitor对象,只有在同步块或方法中才能调用wait/notify等方法。
    • ReentrantLock是具体类(java.util.concurrent.locks.ReentrantLock),是api层面的锁。
  • 使用方法
    • synchronized不需要用户手动去释放锁,当synchronized代码执行完后系统会自动让线程释放对锁的占用。
    • ReentrantLock则需要用户手动的释放锁,若没有主动释放锁,可能导致出现死锁的现象,lock()unlock()方法需要配合try/finally语句来完成。
  • 等待是否可中断
    • synchronized不可中断,除非抛出异常或者正常运行完成。
    • ReentrantLock可中断,设置超时方法tryLock(long timeout, TimeUnit unit),lockInterruptibly()放代码块中,调用interrupt()方法可中断。
  • 加锁是否公平
    • synchronized非公平锁
    • ReentrantLock默认非公平锁,构造方法中可以传入boolean值,true为公平锁,false为非公平锁。
  • 锁可以绑定多个Condition
    • synchronized没有Condition
    • ReentrantLock用来实现分组唤醒需要唤醒的线程们,可以精确唤醒,而不是像 synchronized要么随机唤醒一个线程要么唤醒全部线程。

2.6 ReentrantLock的lock()、tryLock()、lockInterruptibly()有什么区别?

Lock接口的线程请求锁的几个方法:

  • lock()忽视interrupt(), 拿不到锁就一直阻塞:
    @Test
    public void test1() {
        ReentrantLock lock = new ReentrantLock();
        lock.lock();
        System.out.println(Thread.currentThread().getName() + " get lock");

        Thread t = new Thread(()->{
            lock.lock();
            System.out.println(Thread.currentThread().getName() + " get lock");
            lock.unlock();
        },"t");

        t.start();
        System.out.println("t start");

        try {
            TimeUnit.SECONDS.sleep(1);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        t.interrupt();
        System.out.println("t was interrupted");

        try {
            t.join();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

输出:

main get lock
t start
t was interrupted
之后一直阻塞
  • lockInterruptibly()是对lock()的改进,和lock()一样拿不到锁会一直阻塞,但是,阻塞期间如果别的进程调用此进程的interrupt()方法,此线程会被唤醒并被要求处理InterruptedException
      @Test
      public void test2() {
          ReentrantLock lock = new ReentrantLock();
          lock.lock();
          System.out.println(Thread.currentThread().getName() + " get lock");

        Thread t = new Thread(()->{
            try {
                lock.lockInterruptibly();
            } catch (InterruptedException e) {
                System.out.println(Thread.currentThread().getName() + " handle the interrupt");
            }
            System.out.println(Thread.currentThread().getName() + (lock.isHeldByCurrentThread() ? " get lock" : " don't get lock"));
            try {
                lock.unlock();
            } catch (IllegalMonitorStateException e) {
            }

        },"t");

        t.start();
        System.out.println("t start");
        try {
            TimeUnit.SECONDS.sleep(1);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        t.interrupt();
        System.out.println("t was interrupted");

        try {
            t.join();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

输出:

main get lock
t start
t was interrupted
t handle the interrupte
t don't get lock
  • tryLock(),马上返回,拿到lock就返回true,不然返回false。
    @Test
    public void test3() {
        ReentrantLock lock = new ReentrantLock();
        lock.lock();
        System.out.println(Thread.currentThread().getName() + " get lock");

        Thread t = new Thread(()->{
            lock.tryLock();
            System.out.println(Thread.currentThread().getName() + (lock.isHeldByCurrentThread() ? " get lock" : " don't get lock"));
            try {
                lock.unlock();
            } catch (IllegalMonitorStateException e) {
            }
        },"t");
        t.start();
        System.out.println("t start");

        try {
            TimeUnit.SECONDS.sleep(1);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

输出:

main get lock
t start
t don't get lock
  • 带时间限制的tryLock(),拿不到lock,就等一段时间,超时返回false。等待期间如果别的进程调用此进程的interrupt()方法,此线程会被唤醒并被要求处理InterruptedException
    @Test
    public void test4() {
        ReentrantLock lock = new ReentrantLock();
        lock.lock();
        System.out.println(Thread.currentThread().getName() + " get lock");

        Thread t = new Thread(()->{
            try {
                lock.tryLock(5,TimeUnit.SECONDS);
            } catch (InterruptedException e) {
                System.out.println(Thread.currentThread().getName() + " handle the interrupte");
            }

            System.out.println(Thread.currentThread().getName() + (lock.isHeldByCurrentThread() ? " get lock" : " don't get lock"));
            try {
                lock.unlock();
            } catch (IllegalMonitorStateException e) {
            }
        },"t");
        t.start();
        System.out.println("t start");

        try {
            TimeUnit.SECONDS.sleep(1);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        t.interrupt();
        System.out.println("t was interrupted");

        try {
            t.join();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

输出:

main get lock
t start
t was interrupted
t handle the interrupte
t don't get lock

3 自旋锁

3.1 是什么

  • 是指尝试获取锁的线程不会立即堵塞,而是采用循环的方式去尝试获取锁,这样的好处是减少线程上下文切换的消耗,缺点就是循环会消耗 CPU。

3.2 手动实现自旋锁

public class SpinLock {
    private AtomicReference<Thread> atomicReference = new AtomicReference<>();
    private void lock () {

        while (!atomicReference.compareAndSet(null, Thread.currentThread())) {
            // loop
        }
        System.out.println(Thread.currentThread() + " get lock...");
    }

    private void unlock() {
        while (!atomicReference.compareAndSet(Thread.currentThread(), null)) {
            // loop
        }
        System.out.println(thread + " unlock...");
    }

    public static void main(String[] args) throws InterruptedException {
        SpinLock spinLock = new SpinLock();
        new Thread(() -> {
            spinLock.lock();
            try {
                Thread.sleep(3000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println("hahaha");
            spinLock.unlock();

        }).start();

        Thread.sleep(1);

        new Thread(() -> {
            spinLock.lock();
            System.out.println("hehehe");
            spinLock.unlock();
        }).start();
    }
}
  • 输出:
  Thread[Thread-0,5,main] get lock...
  hahaha
  Thread[Thread-0,5,main] unlock...
  Thread[Thread-1,5,main] get lock...
  hehehe
  Thread[Thread-1,5,main] unlock...
获取锁的时候,如果原子引用为空就获取锁,不为空表示有人获取了锁,就循环等待。

4 独占锁(写锁)/共享锁(读锁)

4.1 是什么

  • 独占锁:指该锁一次只能被一个线程持有
  • 共享锁:该锁可以被多个线程持有
  • ReentrantLock 和 synchronized 都是独占锁
  • 对于ReentrantReadWriteLock,其读锁是共享锁而写锁是独占锁。读锁的共享可保证并发读是非常高效的,读写、写读和写写的过程是互斥的。

4.2 读写锁例子

public class MyCache {

    private volatile Map<String, Object> map = new HashMap<>();

    private ReentrantReadWriteLock lock = new ReentrantReadWriteLock();
    WriteLock writeLock = lock.writeLock();
    ReadLock readLock = lock.readLock();

    public void put(String key, Object value) {
        try {
            writeLock.lock();
            System.out.println(Thread.currentThread().getName() + " 正在写入...");
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            map.put(key, value);
            System.out.println(Thread.currentThread().getName() + " 写入完成,写入结果是 " + value);
        } finally {
            writeLock.unlock();
        }
    }

    public void get(String key) {
        try {
            readLock.lock();
            System.out.println(Thread.currentThread().getName() + " 正在读...");
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            Object res = map.get(key);
            System.out.println(Thread.currentThread().getName() + " 读取完成,读取结果是 " + res);
        } finally {
            readLock.unlock();
        }
    }
}
  • 测试

public class ReadWriteLockDemo {
    public static void main(String[] args) {
        MyCache cache = new MyCache();

        for (int i = 0; i < 5; i++) {
            final int temp = i;
            new Thread(() -> {
                cache.put(temp + "", temp + "");
            }).start();
        }

        for (int i = 0; i < 5; i++) {
            final int temp = i;
            new Thread(() -> {
                cache.get(temp + "");
            }).start();
        }
    }
}
  • 输出结果
Thread-0 正在写入...
Thread-0 写入完成,写入结果是 0
Thread-1 正在写入...
Thread-1 写入完成,写入结果是 1
Thread-2 正在写入...
Thread-2 写入完成,写入结果是 2
Thread-3 正在写入...
Thread-3 写入完成,写入结果是 3
Thread-4 正在写入...
Thread-4 写入完成,写入结果是 4
Thread-5 正在读...
Thread-7 正在读...
Thread-8 正在读...
Thread-6 正在读...
Thread-9 正在读...
Thread-5 读取完成,读取结果是 0
Thread-7 读取完成,读取结果是 2
Thread-8 读取完成,读取结果是 3
Thread-6 读取完成,读取结果是 1
Thread-9 读取完成,读取结果是 4
能保证 **读写** 、 **写读** 和 **写写** 的过程是独享的, **读读** 的时候是共享的。