- 1. 概览
- 2. 进程与线程
- 3. Java 线程
- 4. 共享模型之管程
- 8. 共享模型之工具
黑马视频:https://www.bilibili.com/video/BV16J411h7Rd
- 颠覆一些你以为”正确”的认知,纠正其它同类视频的错误
100+ 张手绘图 & 流程图,帮助你形成正确的”多线程世界观”
以知识点为主线、穿插讲解”应用”,”原理”和”多线程设计模式”,多维度学懂并发
1. 概览
1.1 这门课讲什么
这门课中的【并发】一词涵盖了在 Java 平台上的
进程 线程 并发 并行
以及 Java 并发工具、并发问题以及解决方案,同时我也会讲解一些其它领域的并发
1.2 为什么学这么课
我工作中用不到并发啊?
1.3 课程特色
本门课程以并发、并行为主线,穿插讲解
- 应用 - 结合实际
- 原理 - 了然于胸
- 模式 - 正确姿势
1.4 预备知识
希望你不是一个初学者 线程安全问题,需要你接触过 Java Web 开发、Jdbc 开发、Web 服务器、分布式框架时才会遇到
基于 JDK 8,最好对函数式编程、lambda 有一定了解 采用了 slf4j 打印日志,这是好的实践 采用了 lombok 简化 java bean 编写 给每个线程好名字,这也是一项好的实践
pom.xml 依赖如下
<properties>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
</properties>
<dependencies>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.10</version>
</dependency>
<dependency>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-classic</artifactId>
<version>1.2.3</version>
</dependency>
</dependencies>
logback.xml 配置如下
<?xml version="1.0" encoding="UTF-8"?>
<configuration
xmlns="http://ch.qos.logback/xml/ns/logback"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ch.qos.logback/xml/ns/logback logback.xsd">
<appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
<encoder>
<!--%date{HH:mm:ss.SSS} %c -->
<pattern>%date{HH:mm:ss.SSS} %c [%t] - %m%n</pattern>
</encoder>
</appender>
<logger name="c" level="debug" additivity="false">
<appender-ref ref="STDOUT"/>
</logger>
<root level="ERROR">
<appender-ref ref="STDOUT"/>
</root>
</configuration>
2. 进程与线程
本章内容
- 进程和线程的概念
- 并行和并发的概念
- 线程基本应用
2.1 进程与线程
进程
- 程序由指令和数据组成,但这些指令要运行,数据要读写,就必须将指令加载至 CPU,数据加载至内存。在 指令运行过程中还需要用到磁盘、网络等设备。进程就是用来加载指令、管理内存、管理 IO 的
- 当一个程序被运行,从磁盘加载这个程序的代码至内存,这时就开启了一个进程。
- 进程就可以视为程序的一个实例。大部分程序可以同时运行多个实例进程(例如记事本、画图、浏览器 等),也有的程序只能启动一个实例进程(例如网易云音乐、360 安全卫士等)
线程
- 一个进程之内可以分为一到多个线程。
- 一个线程就是一个指令流,将指令流中的一条条指令以一定的顺序交给 CPU 执行
- Java 中,线程作为最小调度单位,进程作为资源分配的最小单位。 在 windows 中进程是不活动的,只是作为线程的容器
二者对比
- 进程基本上相互独立的,而线程存在于进程内,是进程的一个子集
- 进程拥有共享的资源,如内存空间等,供其内部的线程共享
- 进程间通信较为复杂
- 同一台计算机的进程通信称为 IPC(Inter-process communication)
- 不同计算机之间的进程通信,需要通过网络,并遵守共同的协议,例如 HTTP
- 线程通信相对简单,因为它们共享进程内的内存,一个例子是多个线程可以访问同一个共享变量
- 线程更轻量,线程上下文切换成本一般上要比进程上下文切换低
2.2 并行与并发
单核 cpu 下,线程实际还是 串行执行
的。操作系统中有一个组件叫做任务调度器,将 cpu 的时间片(windows 下时间片最小约为 15 毫秒)分给不同的程序使用,只是由于 cpu 在线程间(时间片很短)的切换非常快,人类感 觉是 同时运行的 。总结为一句话就是: 微观串行,宏观并行
,
一般会将这种 线程轮流使用 CPU
的做法称为并发, concurrent
CPU | 时间片1 | 时间片2 | 时间片3 | 时间片4 |
---|---|---|---|---|
core | 线程1 | 线程2 | 线程3 | 线程4 |
多核 cpu下,每个核(core)
都可以调度运行线程,这时候线程可以是并行的。
CPU | 时间片1 | 时间片2 | 时间片3 | 时间片4 |
---|---|---|---|---|
core1 | 线程1 | 线程2 | 线程3 | 线程4 |
core1 | 线程2 | 线程4 | 线程2 | 线程4 |
引用 Rob Pike 的一段描述:
- 并发(concurrent)是同一时间应对(dealing with)多件事情的能力
- 并行(parallel)是同一时间动手做(doing)多件事情的能力
例子
- 家庭主妇做饭、打扫卫生、给孩子喂奶,她一个人轮流交替做这多件事,这时就是并发
- 家庭主妇雇了个保姆,她们一起这些事,这时既有并发,也有并行(这时会产生竞争,例如锅只有一口,一 个人用锅时,另一个人就得等待)
- 雇了3个保姆,一个专做饭、一个专打扫卫生、一个专喂奶,互不干扰,这时是并行
Rob Pike 资料
golang 语言的创造者 Rob Pike - 百度百科
2.3 应用
* 应用之异步调用(案例1)
以调用方角度来讲,如果
- 需要等待结果返回,才能继续运行就是同步
- 不需要等待结果返回,就能继续运行就是异步
同步:
import cn.itcast.Constants;
import cn.itcast.n2.util.FileReader;
import lombok.extern.slf4j.Slf4j;
@Slf4j(topic = "c.Sync")
public class Sync {
public static void main(String[] args) {
FileReader.read(Constants.MP4_FULL_PATH);
log.debug("do other things ...");
}
}
异步:
import cn.itcast.Constants;
import cn.itcast.n2.util.FileReader;
import lombok.extern.slf4j.Slf4j;
@Slf4j(topic = "c.Async")
public class Async {
public static void main(String[] args) {
new Thread(() -> FileReader.read(Constants.MP4_FULL_PATH)).start();
log.debug("do other things ...");
}
}
1) 设计
多线程可以让方法执行变为异步的(即不要巴巴干等着)比如说读取磁盘文件时,假设读取操作花费了 5 秒钟,如 果没有线程调度机制,这 5 秒 cpu 什么都做不了,其它代码都得暂停…
2) 结论
- 比如在项目中,视频文件需要转换格式等操作比较费时,这时开一个新线程处理视频转换,避免阻塞主线程
- tomcat 的异步 servlet 也是类似的目的,让用户线程处理耗时较长的操作,避免阻塞 tomcat 的工作线程
- ui 程序中,开线程进行其他操作,避免阻塞 ui 线程
* 应用之提高效率(案例1)
充分利用多核 cpu 的优势,提高运行效率。想象下面的场景,执行 3 个计算,最后将计算结果汇总。
计算 1 花费 10 ms
计算 2 花费 11 ms
计算 3 花费 9 ms
汇总需要 1 ms
- 如果是串行执行,那么总共花费的时间是
10 + 11 + 9 + 1 = 31ms
- 但如果是四核 cpu,各个核心分别使用线程 1 执行计算 1,线程 2 执行计算 2,线程 3 执行计算 3,那么 3 个 线程是并行的,花费时间只取决于最长的那个线程运行的时间,即
11ms
最后加上汇总时间只会花费 12ms
注意
需要在多核 cpu 才能提高效率,单核仍然时是轮流执行
1) 设计
代码见【应用之效率-案例1】<<<<<
2) 结论
单核 cpu 下,多线程不能实际提高程序运行效率,只是为了能够在不同的任务之间切换,不同线程轮流使用 cpu ,不至于一个线程总占用 cpu,别的线程没法干活
多核 cpu 可以并行跑多个线程,但能否提高程序运行效率还是要分情况的
- 有些任务,经过精心设计,将任务拆分,并行执行,当然可以提高程序的运行效率。但不是所有计算任务都能拆分(参考后文的【阿姆达尔定律】)
- 也不是所有任务都需要拆分,任务的目的如果不同,谈拆分和效率没啥意义
- IO 操作不占用 cpu,只是我们一般拷贝文件使用的是【阻塞 IO】,这时相当于线程虽然不用 cpu,但需要一 直等待 IO 结束,没能充分利用线程。所以才有后面的【非阻塞 IO】和【异步 IO】优化
3. Java 线程
本章内容
- 创建和运行线程
- 查看线程
- 线程 API
- 线程状态
3.1 创建和运行线程
方法一,直接使用 Thread
// 创建线程对象
Thread t = new Thread() {
public void run() {
// 要执行的任务
}
};
// 启动线程
t.start();
例如:
// 构造方法的参数是给线程指定名字,推荐
Thread t1 = new Thread("t1") {
@Override
// run 方法内实现了要执行的任务
public void run() {
log.debug("hello");
}
};
t1.start();
输出
19:19:00 [t1] c.ThreadStarter - hello
方法二,使用 Runnable 配合 Thread
把【线程】和【任务】(要执行的代码)分开
- Thread 代表线程
- Runnable 可运行的任务(线程要执行的代码)
Runnable runnable = new Runnable() {
public void run(){
// 要执行的任务
}
};
// 创建线程对象
Thread t = new Thread( runnable );
// 启动线程
t.start();
例如:
// 创建任务对象
Runnable task2 = new Runnable() {
@Override
public void run() {
log.debug("hello");
}
};
// 参数1 是任务对象; 参数2 是线程名字,推荐
Thread t2 = new Thread(task2, "t2");
t2.start();
输出
19:19:00 [t2] c.ThreadStarter - hello
Java 8 以后可以使用 lambda 精简代码
// 创建任务对象
Runnable task2 = () -> log.debug("hello");
// 参数1 是任务对象; 参数2 是线程名字,推荐
Thread t2 = new Thread(task2, "t2");
t2.start();
* 原理之 Thread 与 Runnable 的关系
分析 Thread 的源码,理清它与 Runnable 的关系
小结
- 方法1 是把线程和任务合并在了一起,方法2 是把线程和任务分开了
- 用 Runnable 更容易与线程池等高级 API 配合
- 用 Runnable 让任务类脱离了 Thread 继承体系,更灵活
方法三,FutureTask 配合 Thread
FutureTask 能够接收 Callable 类型的参数,用来处理有返回结果的情况
// 创建任务对象
FutureTask<Integer> task3 = new FutureTask<>(() -> {
log.debug("hello");
return 100;
});
// 参数1 是任务对象; 参数2 是线程名字,推荐
new Thread(task3, "t3").start();
// 主线程阻塞,同步等待 task 执行完毕的结果
Integer result = task3.get();
log.debug("结果是:{}", result);
输出
19:22:27 [t3] c.ThreadStarter - hello
19:22:27 [main] c.ThreadStarter - 结果是:100
3.2 观察多个线程同时运行
主要是理解
3.3 查看进程线程的方法
windows
- 任务管理器可以查看进程和线程数,也可以用来杀死进程
- tasklist 查看进程
- taskkill 杀死进程
linux
- ps -fe 查看所有进程
- ps -fe | grep java
- ps -fT -p
查看某个进程(PID)的所有线程 - kill 杀死进程
- top 按大写 H 切换是否显示线程
- top -H -p
查看某个进程(PID)的所有线程
Java
- jps 命令查看所有 Java 进程
- jstack
查看某个 Java 进程(PID)的所有线程状态 - jconsole 来查看某个 Java 进程中线程的运行情况(图形界面)
jconsole 远程监控配置
- 需要以如下方式运行你的 java 类
java -Djava.rmi.server.hostname=`ip地址` -Dcom.sun.management.jmxremote Dcom.sun.management.jmxremote.port=`连接端口` -Dcom.sun.management.jmxremote.ssl=是否安全连接 Dcom.sun.management.jmxremote.authenticate=是否认证 java类
- 修改 /etc/hosts 文件将 127.0.0.1 映射至主机名
如果要认证访问,还需要做如下步骤
复制 jmxremote.password 文件 修改 jmxremote.password 和 jmxremote.access 文件的权限为 600 即文件所有者可读写 连接时填入 controlRole(用户名),R&D(密码)
3.4 * 原理之线程运行
栈与栈帧
Java Virtual Machine Stacks (Java 虚拟机栈)
我们都知道 JVM 中由堆、栈、方法区所组成,其中栈内存是给谁用的呢?其实就是线程,每个线程启动后,虚拟 机就会为其分配一块栈内存。
- 每个栈由多个栈帧(Frame)组成,对应着每次方法调用时所占用的内存
- 每个线程只能有一个活动栈帧,对应着当前正在执行的那个方法
public class TestFrames {
public static void main(String[] args) {
method1(10);
}
private static void method1(int x) {
int y = x + 1;
Object m = method2();
System.out.println(m);
}
private static Object method2() {
Object n = new Object();
return n;
}
}
线程之间的栈内存是相互独立的,互不影响。
线程上下文切换(Thread Context Switch)
因为以下一些原因导致 cpu 不再执行当前的线程,转而执行另一个线程的代码
- 线程的 cpu 时间片用完
- 垃圾回收
- 有更高优先级的线程需要运行
- 线程自己调用了 sleep、yield、wait、join、park、synchronized、lock 等方法
当 Context Switch 发生时,需要由操作系统保存当前线程的状态,并恢复另一个线程的状态,Java 中对应的概念 就是程序计数器(Program Counter Register),它的作用是记住下一条 jvm 指令的执行地址,是线程私有的
- 状态包括程序计数器、虚拟机栈中每个栈帧的信息,如局部变量、操作数栈、返回地址等
- Context Switch 频繁发生会影响性能
3.5 常见方法
方法名 | static | 功能说明 | 注意 |
---|---|---|---|
start() | 启动一个新线 程,在新的线程 运行 run 方法 中的代码 | start 方法只是让线程进入就绪,里面代码不一定立刻 运行(CPU 的时间片还没分给它)。每个线程对象的 start方法只能调用一次,如果调用了多次会出现 IllegalThreadStateException | |
run() | 新线程启动后会 调用的方法 | 如果在构造 Thread 对象时传递了 Runnable 参数,则 线程启动后会调用 Runnable 中的 run 方法,否则默 认不执行任何操作。但可以创建 Thread 的子类对象, 来覆盖默认行为 | |
join() | 等待线程运行结束 | ||
join(long n) | 等待线程运行结束,最多等待 n 毫秒 | ||
getId() | 获取线程长整型 的 id | id 唯一 | |
getName() | 获取线程名 | ||
setName(String) | 修改线程名 | ||
getPriority() | 获取线程优先级 | ||
setPriority(int) | 修改线程优先级 | java中规定线程优先级是1~10 的整数,较大的优先级 能提高该线程被 CPU 调度的机率 | |
getState() | 获取线程状态 | Java 中线程状态是用 6 个 enum 表示,分别为: NEW, RUNNABLE, BLOCKED, WAITING, TIMED_WAITING, TERMINATED | |
isInterrupted() | 判断是否被打 断, | 不会清除 打断标记 | |
isAlive() | 线程是否存活 (还没有运行完 毕) | ||
interrupt() | 打断线程 | 如果被打断线程正在 sleep,wait,join 会导致被打断 的线程抛出 InterruptedException,并清除 打断标 记 ;如果打断的正在运行的线程,则会设置 打断标 记 ;park 的线程被打断,也会设置 打断标记 | |
interrupted() | static | 判断当前线程是 否被打断 | 会清除 打断标记 |
currentThread() | static | 获取当前正在执 行的线程 |
sleep(long n) | static | 让当前执行的线 程休眠n毫秒, 休眠时让出 cpu 的时间片给其它 线程 | |
---|---|---|---|
yield() | static | 提示线程调度器 让出当前线程对 CPU的使用 | 主要是为了测试和调试 |
3.6 start 与 run
调用 run
public static void main(String[] args) {
Thread t1 = new Thread("t1") {
@Override
public void run() {
log.debug("running...");
FileReader.read(Constants.MP4_FULL_PATH);
}
};
t1.run();
log.debug("do other things...");
}
输出
19:39:14 [main] c.TestStart - main
19:39:14 [main] c.FileReader - read [1.mp4] start ...
19:39:18 [main] c.FileReader - read [1.mp4] end ... cost: 4227 ms
19:39:18 [main] c.TestStart - do other things ...
程序仍在 main 线程运行, FileReader.read()
方法调用还是同步的
调用 start
将上述代码的 t1.run() 改为
t1.start();
输出
19:41:30 [main] c.TestStart - do other things ...
19:41:30 [t1] c.TestStart - t1
19:41:30 [t1] c.FileReader - read [1.mp4] start ...
19:41:35 [t1] c.FileReader - read [1.mp4] end ... cost: 4542 ms
程序在 t1 线程运行, FileReader.read()
方法调用是异步的
小结
- 直接调用 run 是在主线程中执行了 run,没有启动新的线程
- 使用 start 是启动新的线程,通过新的线程间接执行 run 中的代码
3.7 sleep 与 yield
sleep
- 调用 sleep 会让当前线程从 Running 进入 Timed Waiting 状态(阻塞)
public static void main(String[] args) {
Thread t1 = new Thread("t1") {
@Override
public void run() {
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
};
t1.start();
log.debug("t1 state: {}", t1.getState());
try {
Thread.sleep(500);
} catch (InterruptedException e) {
e.printStackTrace();
}
log.debug("t1 state: {}", t1.getState());
}
输出
20:40:26.349 c.Test6 [main] - t1 state: RUNNABLE
20:40:26.865 c.Test6 [main] - t1 state: TIMED_WAITING
- 其它线程可以使用 interrupt 方法打断正在睡眠的线程,这时 sleep 方法会抛出 InterruptedException
public static void main(String[] args) throws InterruptedException {
Thread t1 = new Thread("t1") {
@Override
public void run() {
log.debug("enter sleep...");
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
log.debug("wake up...");
e.printStackTrace();
}
}
};
t1.start();
Thread.sleep(1000);
log.debug("interrupt...");
t1.interrupt();
}
- 睡眠结束后的线程未必会立刻得到执行
- 建议用 TimeUnit 的 sleep 代替 Thread 的 sleep 来获得更好的可读性
public static void main(String[] args) throws InterruptedException {
log.debug("enter");
TimeUnit.SECONDS.sleep(1);
log.debug("end");
// Thread.sleep(1000);
}
yield
让出,谦让的意思,让出 CPU 使用权
调用 yield 会让当前线程从 Running 进入 Runnable 就绪状态,然后调度执行其它线程
具体的实现依赖于操作系统的任务调度器
sleep 和 yield区别
1.
任务调度器会把时间片分配给就绪状态的线程
任务调度器不会把时间片分配给阻塞状态的线程
2.
sleep 有等待时间,yield 没有等待时间。
线程优先级
- 线程优先级会提示(hint)调度器优先调度该线程,但它仅仅是一个提示,调度器可以忽略它
- 如果 cpu 比较忙,那么优先级高的线程会获得更多的时间片,但 cpu 闲时,优先级几乎没作用
public static void main(String[] args) {
Runnable task1 = () -> {
int count = 0;
for (;;) {
System.out.println("---->1 " + count++);
}
};
Runnable task2 = () -> {
int count = 0;
for (;;) {
// Thread.yield();
System.out.println(" ---->2 " + count++);
}
};
Thread t1 = new Thread(task1, "t1");
Thread t2 = new Thread(task2, "t2");
t1.setPriority(Thread.MIN_PRIORITY);
t2.setPriority(Thread.MAX_PRIORITY);
t1.start();
t2.start();
}
yield 和 线程优先级都仅仅对调度器是一个提示而已,不能真正控制。
* 应用之效率(案例2)
3.8 join 方法详解
为什么需要 join
下面的代码执行,打印 r 是什么?
static int r = 0;
public static void main(String[] args) throws InterruptedException {
test1();
}
private static void test1() throws InterruptedException {
log.debug("开始");
Thread t1 = new Thread(() -> {
log.debug("开始");
sleep(1);
log.debug("结束");
r = 10;
});
t1.start();
log.debug("结果为:{}", r);
log.debug("结束");
}
分析
- 因为主线程和线程 t1 是并行执行的,t1 线程需要 1 秒之后才能算出 r=10
- 而主线程一开始就要打印 r 的结果,所以只能打印出 r=0
解决方法
- 用 sleep 行不行?为什么?
- 用 join,加在 t1.start() 之后即可
static int r = 0;
public static void main(String[] args) throws InterruptedException {
test1();
}
private static void test1() throws InterruptedException {
log.debug("开始");
Thread t1 = new Thread(() -> {
log.debug("开始");
sleep(1);
log.debug("结束");
r = 10;
});
t1.start();
t1.join(); // 等待线程1的结束
log.debug("结果为:{}", r);
log.debug("结束");
}
* 应用之同步(案例1)
以调用方角度来讲,如果
- 需要等待结果返回,才能继续运行就是同步
- 不需要等待结果返回,就能继续运行就是异步
等待多个结果
问,下面代码 cost 大约多少秒?
static int r1 = 0;
static int r2 = 0;
public static void main(String[] args) throws InterruptedException {
test2();
}
private static void test2() throws InterruptedException {
Thread t1 = new Thread(() -> {
sleep(1);
r1 = 10;
});
Thread t2 = new Thread(() -> {
sleep(2);
r2 = 20;
});
long start = System.currentTimeMillis();
t1.start();
t2.start();
t1.join();
t2.join();
long end = System.currentTimeMillis();
log.debug("r1: {} r2: {} cost: {}", r1, r2, end - start);
}
分析如下
- 第一个 join:等待 t1 时, t2 并没有停止, 而在运行
- 第二个 join:1s 后, 执行到此, t2 也运行了 1s, 因此也只需再等待 1s
如果颠倒两个 join 呢?
最终都是输出
20:45:43.239 [main] c.TestJoin - r1: 10 r2: 20 cost: 2005
有时效的 join
等够时间
static int r1 = 0;
static int r2 = 0;
public static void main(String[] args) throws InterruptedException {
test3();
}
public static void test3() throws InterruptedException {
Thread t1 = new Thread(() -> {
sleep(1);
r1 = 10;
});
long start = System.currentTimeMillis();
t1.start();
// 线程执行结束会导致 join 结束
t1.join(1500);
long end = System.currentTimeMillis();
log.debug("r1: {} r2: {} cost: {}", r1, r2, end - start);
}
输出
20:48:01.320 [main] c.TestJoin - r1: 10 r2: 0 cost: 1010
没等够时间
static int r1 = 0;
static int r2 = 0;
public static void main(String[] args) throws InterruptedException {
test3();
}
public static void test3() throws InterruptedException {
Thread t1 = new Thread(() -> {
sleep(2);
r1 = 10;
});
long start = System.currentTimeMillis();
t1.start();
t1.join(1500);
long end = System.currentTimeMillis();
log.debug("r1: {} r2: {} cost: {}", r1, r2, end - start);
}
输出
20:52:15.623 [main] c.TestJoin - r1: 0 r2: 0 cost: 1502
3.9 interrupt 方法详解
打断 sleep,wait,join 的线程
这几个方法都会让线程进入阻塞状态
打断 sleep 的线程, 会清空打断状态,以 sleep 为例
private static void test1() throws InterruptedException {
Thread t1 = new Thread(()->{
sleep(1);
}, "t1");
t1.start();
sleep(0.5);
t1.interrupt();
log.debug(" 打断状态: {}", t1.isInterrupted());
}
输出
java.lang.InterruptedException: sleep interrupted
at java.lang.Thread.sleep(Native Method)
at java.lang.Thread.sleep(Thread.java:340)
at java.util.concurrent.TimeUnit.sleep(TimeUnit.java:386)
at cn.itcast.n2.util.Sleeper.sleep(Sleeper.java:8)
at cn.itcast.n4.TestInterrupt.lambda$test1$3(TestInterrupt.java:59)
at java.lang.Thread.run(Thread.java:745)
21:18:10.374 [main] c.TestInterrupt - 打断状态: false
打断正常运行的线程
打断正常运行的线程, 不会清空打断状态
被打断的线程可以自己决定是否停止线程,打断状态可以用来停止线程
private static void test2() throws InterruptedException {
Thread t2 = new Thread(()->{
while(true) {
Thread current = Thread.currentThread();
boolean interrupted = current.isInterrupted();
if(interrupted) {
log.debug(" 打断状态: {}", interrupted);
break;
}
}
}, "t2");
t2.start();
sleep(0.5);
t2.interrupt();
}
输出
20:57:37.964 [t2] c.TestInterrupt - 打断状态: true
* 模式之两阶段终止
打断 park 线程
打断 park 线程, 不会清空打断状态
private static void test3() throws InterruptedException {
Thread t1 = new Thread(() -> {
log.debug("park...");
LockSupport.park();
log.debug("unpark...");
log.debug("打断状态:{}", Thread.currentThread().isInterrupted());
}, "t1");
t1.start();
sleep(0.5);
t1.interrupt();
}
输出
21:11:52.795 [t1] c.TestInterrupt - park...
21:11:53.295 [t1] c.TestInterrupt - unpark...
21:11:53.295 [t1] c.TestInterrupt - 打断状态:true
如果打断标记已经是 true, 则 park 会失效
private static void test4() {
Thread t1 = new Thread(() -> {
for (int i = 0; i < 5; i++) {
log.debug("park...");
LockSupport.park();
log.debug("打断状态:{}", Thread.currentThread().isInterrupted());
}
});
t1.start();
sleep(1);
t1.interrupt();
}
21:13:48.783 [Thread-0] c.TestInterrupt - park...
21:13:49.809 [Thread-0] c.TestInterrupt - 打断状态:true
21:13:49.812 [Thread-0] c.TestInterrupt - park...
21:13:49.813 [Thread-0] c.TestInterrupt - 打断状态:true
21:13:49.813 [Thread-0] c.TestInterrupt - park...
21:13:49.813 [Thread-0] c.TestInterrupt - 打断状态:true
21:13:49.813 [Thread-0] c.TestInterrupt - park...
21:13:49.813 [Thread-0] c.TestInterrupt - 打断状态:true
21:13:49.813 [Thread-0] c.TestInterrupt - park...
21:13:49.813 [Thread-0] c.TestInterrupt - 打断状态:true
3.10 不推荐的方法
还有一些不推荐使用的方法,这些方法已过时,容易破坏同步代码块,造成线程死锁
方法名 | static | 功能说明 |
---|---|---|
stop() | 停止线程运行 | |
suspend() | 挂起(暂停)线程运行 | |
resume() | 恢复线程运行 |
3.11 主线程与守护线程
默认情况下,Java 进程需要等待所有线程都运行结束,才会结束。有一种特殊的线程叫做守护线程,只要其它非守 护线程运行结束了,即使守护线程的代码没有执行完,也会强制结束。
例:
log.debug("开始运行...");
Thread t1 = new Thread(() -> {
log.debug("开始运行...");
sleep(2);
log.debug("运行结束...");
}, "daemon");
// 设置该线程为守护线程
t1.setDaemon(true);
t1.start();
sleep(1);
log.debug("运行结束...");
输出
08:26:38.123 [main] c.TestDaemon - 开始运行...
08:26:38.213 [daemon] c.TestDaemon - 开始运行...
08:26:39.215 [main] c.TestDaemon - 运行结束...
注意
- 垃圾回收器线程就是一种守护线程
- Tomcat 中的 Acceptor 和 Poller 线程都是守护线程,所以 Tomcat 接收到 shutdown 命令后,不会等待它们处理完当前请求
3.12 五种状态
这是从 操作系统 层面来描述的
- 【初始状态】仅是在语言层面创建了线程对象,还未与操作系统线程关联
- 【可运行状态】(就绪状态)指该线程已经被创建(与操作系统线程关联),可以由 CPU 调度执行 【
- 运行状态】指获取了 CPU 时间片运行中的状态 当 CPU 时间片用完,会从【运行状态】转换至【可运行状态】,会导致线程的上下文切换
- 【阻塞状态】
- 如果调用了阻塞 API,如 BIO 读写文件,这时该线程实际不会用到 CPU,会导致线程上下文切换,进入 【阻塞状态】
- 等 BIO 操作完毕,会由操作系统唤醒阻塞的线程,转换至【可运行状态】
- 与【可运行状态】的区别是,对【阻塞状态】的线程来说只要它们一直不唤醒,调度器就一直不会考虑 调度它们
- 【终止状态】表示线程已经执行完毕,生命周期已经结束,不会再转换为其它状态
3.13 六种状态
这是从 Java API 层面来描述的
根据 Thread.State 枚举,分为六种状态
- NEW 线程刚被创建,但是还没有调用 start() 方法
- RUNNABLE 当调用了 start() 方法之后,注意,Java API 层面的 RUNNABLE 状态涵盖了 操作系统 层面的 【可运行状态】、【运行状态】和【阻塞状态】(由于 BIO 导致的线程阻塞,在 Java 里无法区分,仍然认为 是可运行)
- BLOCKED , WAITING , TIMED_WAITING 都是 Java API 层面对【阻塞状态】的细分,后面会在状态转换一节 详述
- TERMINATED 当线程代码运行结束
@Slf4j(topic = "c.TestState")
public class TestState {
public static void main(String[] args) throws IOException {
Thread t1 = new Thread("t1") {
@Override
public void run() {
log.debug("running...");
}
};
Thread t2 = new Thread("t2") {
@Override
public void run() {
while(true) { // runnable
}
}
};
t2.start();
Thread t3 = new Thread("t3") {
@Override
public void run() {
log.debug("running...");
}
};
t3.start();
Thread t4 = new Thread("t4") {
@Override
public void run() {
synchronized (TestState.class) {
try {
Thread.sleep(1000000); // timed_waiting
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
};
t4.start();
Thread t5 = new Thread("t5") {
@Override
public void run() {
try {
t2.join(); // waiting
} catch (InterruptedException e) {
e.printStackTrace();
}
}
};
t5.start();
Thread t6 = new Thread("t6") {
@Override
public void run() {
synchronized (TestState.class) { // blocked
try {
Thread.sleep(1000000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
};
t6.start();
try {
Thread.sleep(500);
} catch (InterruptedException e) {
e.printStackTrace();
}
log.debug("t1 state {}", t1.getState());
log.debug("t2 state {}", t2.getState());
log.debug("t3 state {}", t3.getState());
log.debug("t4 state {}", t4.getState());
log.debug("t5 state {}", t5.getState());
log.debug("t6 state {}", t6.getState());
System.in.read();
}
}
输出
21:08:36.026 c.TestState [t3] - running...
21:08:36.530 c.TestState [main] - t1 state NEW
21:08:36.531 c.TestState [main] - t2 state RUNNABLE
21:08:36.532 c.TestState [main] - t3 state TERMINATED
21:08:36.532 c.TestState [main] - t4 state TIMED_WAITING
21:08:36.532 c.TestState [main] - t5 state WAITING
21:08:36.532 c.TestState [main] - t6 state BLOCKED
3.14 习题
阅读华罗庚《统筹方法》,给出烧水泡茶的多线程解决方案,提示
- 参考图二,用两个线程(两个人协作)模拟烧水泡茶过程
- 文中办法乙、丙都相当于任务串行
- 而图一相当于启动了 4 个线程,有点浪费
- 用 sleep(n) 模拟洗茶壶、洗水壶等耗费的时间
附:华罗庚《统筹方法》
统筹方法,是一种安排工作进程的数学方法。它的实用范围极广泛,在企业管理和基本建设中,以及关系复 杂的科研项目的组织与管理中,都可以应用。
怎样应用呢?主要是把工序安排好。比如,想泡壶茶喝。当时的情况是:开水没有;水壶要洗,茶壶、茶杯要洗;火已生了,茶叶也有了。怎么 办?
办法甲:洗好水壶,灌上凉水,放在火上;在等待水开的时间里,洗茶壶、洗茶杯、拿茶叶;等水开 了,泡茶喝。 办法乙:先做好一些准备工作,洗水壶,洗茶壶茶杯,拿茶叶;一切就绪,灌水烧水;坐待水开了,泡 茶喝。 办法丙:洗净水壶,灌上凉水,放在火上,坐待水开;水开了之后,急急忙忙找茶叶,洗茶壶茶杯,泡 茶喝。
哪一种办法省时间?我们能一眼看出,第一种办法好,后两种办法都窝了工。
这是小事,但这是引子,可以引出生产管理等方面有用的方法来。
水壶不洗,不能烧开水,因而洗水壶是烧开水的前提。没开水、没茶叶、不洗茶壶茶杯,就不能泡茶,因而 这些又是泡茶的前提。它们的相互关系,可以用下边的箭头图来表示:
从这个图上可以一眼看出,办法甲总共要16分钟(而办法乙、丙需要20分钟)。如果要缩短工时、提高工作 效率,应当主要抓烧开水这个环节,而不是抓拿茶叶等环节。同时,洗茶壶茶杯、拿茶叶总共不过4分钟,大 可利用“等水开”的时间来做。
是的,这好像是废话,卑之无甚高论。有如走路要用两条腿走,吃饭要一口一口吃,这些道理谁都懂得。但 稍有变化,临事而迷的情况,常常是存在的。在近代工业的错综复杂的工艺过程中,往往就不是像泡茶喝这 么简单了。任务多了,几百几千,甚至有好几万个任务。关系多了,错综复杂,千头万绪,往往出现“万事俱 备,只欠东风”的情况。由于一两个零件没完成,耽误了一台复杂机器的出厂时间。或往往因为抓的不是关 键,连夜三班,急急忙忙,完成这一环节之后,还得等待旁的环节才能装配。
洗茶壶,洗茶杯,拿茶叶,或先或后,关系不大,而且同是一个人的活儿,因而可以合并成为:
看来这是“小题大做”,但在工作环节太多的时候,这样做就非常必要了。 这里讲的主要是时间方面的事,但在具体生产实践中,还有其他方面的许多事。这种方法虽然不一定能直接 解决所有问题,但是,我们利用这种方法来考虑问题,也是不无裨益的。
* 应用之统筹(烧水泡茶)
本章小结
本章的重点在于掌握
- 线程创建
- 线程重要 api,如 start,run,sleep,join,interrupt 等
- 线程状态
- 应用方面
- 异步调用:主线程执行期间,其它线程异步执行耗时操作
- 提高效率:并行计算,缩短运算时间 同步等待:join
- 统筹规划:合理使用线程,得到最优效果
- 原理方面
- 线程运行流程:栈、栈帧、上下文切换、程序计数器
- Thread 两种创建方式 的源码
- 模式方面
- 终止模式之两阶段终止
4. 共享模型之管程
本章内容
- 共享问题
- synchronized
- 线程安全分析
- Monitor
- wait/notify
- 线程状态转换
- 活跃性
- Lock
4.1 共享带来的问题
小故事
- 老王(操作系统)有一个功能强大的算盘(CPU),现在想把它租出去,赚一点外快
小南、小女(线程)来使用这个算盘来进行一些计算,并按照时间给老王支付费用
- 但小南不能一天24小时使用算盘,他经常要小憩一会(sleep),又或是去吃饭上厕所(阻塞 io 操作),有时还需要一根烟,没烟时思路全无(wait)这些情况统称为(阻塞)
- 在这些时候,算盘没利用起来(不能收钱了),老王觉得有点不划算
- 另外,小女也想用用算盘,如果总是小南占着算盘,让小女觉得不公平
- 于是,老王灵机一动,想了个办法 [ 让他们每人用一会,轮流使用算盘 ]
- 这样,当小南阻塞的时候,算盘可以分给小女使用,不会浪费,反之亦然
- 最近执行的计算比较复杂,需要存储一些中间结果,而学生们的脑容量(工作内存)不够,所以老王申请了 一个笔记本(主存),把一些中间结果先记在本上 计算流程是这样的
- 但是由于分时系统,有一天还是发生了事故
- 小南刚读取了初始值 0 做了个 +1 运算,还没来得及写回结果
- 老王说 [ 小南,你的时间到了,该别人了,记住结果走吧 ],于是小南念叨着 [ 结果是1,结果是1…] 不甘心地 到一边待着去了(上下文切换)
- 老王说 [ 小女,该你了 ],小女看到了笔记本上还写着 0 做了一个 -1 运算,将结果 -1 写入笔记本
- 这时小女的时间也用完了,老王又叫醒了小南:[小南,把你上次的题目算完吧],小南将他脑海中的结果 1 写 入了笔记本
- 小南和小女都觉得自己没做错,但笔记本里的结果是 1 而不是 0
Java 的体现
两个线程对初始值为 0 的静态变量一个做自增,一个做自减,各做 5000 次,结果是 0 吗?
static int counter = 0;
public static void main(String[] args) throws InterruptedException {
Thread t1 = new Thread(() -> {
for (int i = 0; i < 5000; i++) {
counter++;
}
}, "t1");
Thread t2 = new Thread(() -> {
for (int i = 0; i < 5000; i++) {
counter--;
}
}, "t2");
t1.start();
t2.start();
t1.join();
t2.join();
log.debug("{}",counter);
}
问题分析
以上的结果可能是正数、负数、零。为什么呢?因为 Java 中对静态变量的自增,自减并不是原子操作,要彻底理 解,必须从字节码来进行分析
例如对于 i++ 而言(i 为静态变量),实际会产生如下的 JVM 字节码指令:
getstatic i // 获取静态变量i的值
iconst_1 // 准备常量1
iadd // 自增
putstatic i // 将修改后的值存入静态变量i
而对应 i— 也是类似:
getstatic i // 获取静态变量i的值
iconst_1 // 准备常量1
isub // 自减
putstatic i // 将修改后的值存入静态变量i
而 Java 的内存模型如下,完成静态变量的自增,自减需要在主存和工作内存中进行数据交换:
如果是单线程以上 8 行代码是顺序执行(不会交错)没有问题:
但多线程下这 8 行代码可能交错运行:
出现负数的情况:
出现正数的情况:
临界区 Critical Section
- 一个程序运行多个线程本身是没有问题的
- 问题出在多个线程访问共享资源
- 多个线程读共享资源其实也没有问题
- 在多个线程对共享资源读写操作时发生指令交错,就会出现问题
- 一段代码块内如果存在对共享资源的多线程读写操作,称这段代码块为临界区 例如,下面代码中的临界区
static int counter = 0;
static void increment()
// 临界区
{
counter++;
}
static void decrement()
// 临界区
{
counter--;
}
竞态条件 Race Condition
多个线程在临界区内执行,由于代码的执行序列不同而导致结果无法预测,称之为发生了竞态条件
4.2 synchronized 解决方案
* 应用之互斥
为了避免临界区的竞态条件发生,有多种手段可以达到目的。
- 阻塞式的解决方案:synchronized,Lock
- 非阻塞式的解决方案:原子变量
本次课使用阻塞式的解决方案:synchronized,来解决上述问题,即俗称的【对象锁】,它采用互斥的方式让同一 时刻至多只有一个线程能持有【对象锁】,其它线程再想获取这个【对象锁】时就会阻塞住。这样就能保证拥有锁 的线程可以安全的执行临界区内的代码,不用担心线程上下文切换
注意
虽然 java 中互斥和同步都可以采用 synchronized 关键字来完成,但它们还是有区别的:互斥是保证临界区的竞态条件发生,同一时刻只能有一个线程执行临界区代码 同步是由于线程执行的先后、顺序不同、需要一个线程等待其它线程运行到某个点
synchronized
语法
synchronized(对象) // 线程1, 线程2(blocked)
{
临界区
}
解决
static int counter = 0;
static final Object room = new Object();
public static void main(String[] args) throws InterruptedException {
Thread t1 = new Thread(() -> {
for (int i = 0; i < 5000; i++) {
synchronized (room) {
counter++;
}
}
}, "t1");
Thread t2 = new Thread(() -> {
for (int i = 0; i < 5000; i++) {
synchronized (room) {
counter--;
}
}
}, "t2");
t1.start();
t2.start();
t1.join();
t2.join();
log.debug("{}",counter);
}
你可以做这样的类比:
- synchronized(对象) 中的对象,可以想象为一个房间(room),有唯一入口(门)房间只能一次进入一人 进行计算,线程 t1,t2 想象成两个人
- 当线程 t1 执行到 synchronized(room) 时就好比 t1 进入了这个房间,并锁住了门拿走了钥匙,在门内执行 count++ 代码
- 这时候如果 t2 也运行到了 synchronized(room) 时,它发现门被锁住了,只能在门外等待,发生了上下文切 换,阻塞住了
- 这中间即使 t1 的 cpu 时间片不幸用完,被踢出了门外(不要错误理解为锁住了对象就能一直执行下去哦), 这时门还是锁住的,t1 仍拿着钥匙,t2 线程还在阻塞状态进不来,只有下次轮到 t1 自己再次获得时间片时才 能开门进入
- 当 t1 执行完 synchronized{} 块内的代码,这时候才会从 obj 房间出来并解开门上的锁,唤醒 t2 线程把钥 匙给他。t2 线程这时才可以进入 obj 房间,锁住了门拿上钥匙,执行它的 count— 代码
用图来表示
思考
synchronized 实际是用对象锁保证了临界区内代码的原子性,临界区内的代码对外是不可分割的,不会被线程切 换所打断。
为了加深理解,请思考下面的问题
- 如果把 synchronized(obj) 放在 for 循环的外面,如何理解?— 原子性
- 如果 t1 synchronized(obj1) 而 t2 synchronized(obj2) 会怎样运作?— 原子性不能保障
- 如果 t1 synchronized(obj) 而 t2 没有加会怎么样?如何理解?— 原子性不能保障
面向对象改进
把需要保护的共享变量放入一个类
public class Test17 {
public static void main(String[] args) throws InterruptedException {
Room room = new Room();
Thread t1 = new Thread(() -> {
for (int i = 0; i < 5000; i++) {
room.increment();
}
}, "t1");
Thread t2 = new Thread(() -> {
for (int i = 0; i < 5000; i++) {
room.decrement();
}
}, "t2");
t1.start();
t2.start();
t1.join();
t2.join();
log.debug("{}", room.getCounter());
}
}
class Room {
private int counter = 0;
public void increment() {
synchronized(this) {
counter++;
}
}
public synchronized void decrement() {
synchronized(this) {
counter--;
}
}
public synchronized int getCounter() {
synchronized(this) {
return counter;
}
}
}
4.3 方法上的 synchronized
class Test{
public synchronized void test() {
}
}
等价于
class Test{
public void test() {
synchronized(this) {
}
}
}
class Test{
public synchronized static void test() {
}
}
等价于
class Test{
public static void test() {
synchronized(Test.class) {
}
}
}
不加 synchronized 的方法
不加 synchronzied 的方法就好比不遵守规则的人,不去老实排队(好比翻窗户进去的)
所谓的“线程八锁”
其实就是考察 synchronized 锁住的是哪个对象
情况1:12 或 21
@Slf4j(topic = "c.Number") class Number{
public synchronized void a() { log.debug("1"); } public synchronized void b() {
log.debug("2"); }
}
public static void main(String[] args) { Number n1 = new Number(); new Thread(()->{ n1.a(); }).start(); new Thread(()->{ n1.b(); }).start(); }
情况2:1s后12,或 2 1s后 1
@Slf4j(topic = "c.Number") class Number{
public synchronized void a() { sleep(1); log.debug("1"); } public synchronized void b() {
log.debug("2"); }
}
public static void main(String[] args) { Number n1 = new Number(); new Thread(()->{ n1.a(); }).start(); new Thread(()->{ n1.b(); }).start(); }
情况3:3 1s 12 或 23 1s 1 或 32 1s 1
@Slf4j(topic = "c.Number")
class Number{
public synchronized void a() { sleep(1); log.debug("1"); } public synchronized void b() {
log.debug("2"); } public void c() {
log.debug("3"); }
}
public static void main(String[] args) { Number n1 = new Number(); new Thread(()->{ n1.a(); }).start(); new Thread(()->{ n1.b(); }).start(); new Thread(()->{ n1.c(); }).start(); }
情况4:2 1s 后 1
@Slf4j(topic = "c.Number") class Number{
public synchronized void a() { sleep(1); log.debug("1"); } public synchronized void b() {
log.debug("2"); }
}
public static void main(String[] args) { Number n1 = new Number(); Number n2 = new Number(); new Thread(()->{ n1.a(); }).start(); new Thread(()->{ n2.b(); }).start(); }
情况5:2 1s 后 1
锁的是不同的对象
@Slf4j(topic = "c.Number") class Number{
public static synchronized void a() { sleep(1); log.debug("1"); } public synchronized void b() {
log.debug("2");
}
}
public static void main(String[] args) { Number n1 = new Number(); new Thread(()->{ n1.a(); }).start(); new Thread(()->{ n1.b(); }).start(); }
情况6:1s 后12, 或 2 1s后 1
@Slf4j(topic = "c.Number") class Number{
public static synchronized void a() { sleep(1); log.debug("1"); } public static synchronized void b() {
log.debug("2"); }
}
public static void main(String[] args) { Number n1 = new Number(); new Thread(()->{ n1.a(); }).start(); new Thread(()->{ n1.b(); }).start(); }
情况7:2 1s 后 1
@Slf4j(topic = "c.Number") class Number{
public static synchronized void a() { sleep(1); log.debug("1"); } public synchronized void b() {
log.debug("2"); }
}
public static void main(String[] args) { Number n1 = new Number(); Number n2 = new Number(); new Thread(()->{ n1.a(); }).start(); new Thread(()->{ n2.b(); }).start(); }
情况8:1s 后12, 或 2 1s后 1
@Slf4j(topic = “c.Number”)
@Slf4j(topic = "c.Number")
class Number{
public static synchronized void a() { sleep(1); log.debug("1"); } public static synchronized void b() {
log.debug("2"); }
}
public static void main(String[] args) { Number n1 = new Number(); Number n2 = new Number(); new Thread(()->{ n1.a(); }).start(); new Thread(()->{ n2.b(); }).start(); }
4.4 变量的线程安全分析
成员变量和静态变量是否线程安全?
- 如果它们没有共享,则线程安全 如果它们被共享了,根据它们的状态是否能够改变,又分两种情况
- 如果只有读操作,则线程安全
- 如果有读写操作,则这段代码是临界区,需要考虑线程安全
局部变量是否线程安全?
- 局部变量是线程安全的
- 但局部变量引用的对象则未必
- 如果该对象没有逃离方法的作用访问,它是线程安全的
- 如果该对象逃离方法的作用范围,需要考虑线程安全
局部变量线程安全分析
public static void test1() {
int i = 10;
i++;
}
每个线程调用 test1() 方法时局部变量 i,会在每个线程的栈帧内存中被创建多份,因此不存在共享
如图
局部变量的引用稍有不同
先看一个成员变量的例子
class ThreadUnsafe {
ArrayList<String> list = new ArrayList<>();
public void method1(int loopNumber) {
for (int i = 0; i < loopNumber; i++) {
// { 临界区, 会产生竞态条件
method2();
method3();
// } 临界区
}
}
private void method2() {
list.add("1");
}
private void method3() {
list.remove(0);
}
}
执行
static final int THREAD_NUMBER = 2;
static final int LOOP_NUMBER = 200;
public static void main(String[] args) {
ThreadUnsafe test = new ThreadUnsafe();
for (int i = 0; i < THREAD_NUMBER; i++) {
new Thread(() -> {
test.method1(LOOP_NUMBER);
}, "Thread" + i).start();
}
}
其中一种情况是,如果线程2 还未 add,线程1 remove 就会报错:
Exception in thread "Thread1" java.lang.IndexOutOfBoundsException: Index: 0, Size: 0
at java.util.ArrayList.rangeCheck(ArrayList.java:657)
at java.util.ArrayList.remove(ArrayList.java:496)
at cn.itcast.n6.ThreadUnsafe.method3(TestThreadSafe.java:35)
at cn.itcast.n6.ThreadUnsafe.method1(TestThreadSafe.java:26)
at cn.itcast.n6.TestThreadSafe.lambda$main$0(TestThreadSafe.java:14)
at java.lang.Thread.run(Thread.java:748)
分析:
- 无论哪个线程中的 method2 引用的都是同一个对象中的 list 成员变量
- method3 与 method2 分析相同
将 list 修改为局部变量
class ThreadSafe {
public void method1(int loopNumber) {
ArrayList<String> list = new ArrayList<>();
for (int i = 0; i < loopNumber; i++) {
method2(list);
method3(list);
}
}
private void method2(ArrayList<String> list) {
list.add("1");
}
private void method3(ArrayList<String> list) {
list.remove(0);
}
}
那么就不会有上述问题了
分析:
- list 是局部变量,每个线程调用时会创建其不同实例,没有共享
- 而 method2 的参数是从 method1 中传递过来的,与 method1 中引用同一个对象
- method3 的参数分析与 method2 相同
方法访问修饰符带来的思考,如果把 method2 和 method3 的方法修改为 public 会不会代理线程安全问题?
- 情况1:有其它线程调用 method2 和 method3
情况2:在 情况1 的基础上,为 ThreadSafe 类添加子类,子类覆盖 method2 或 method3 方法,即 ```java class ThreadSafe {
public void method1(int loopNumber) {
ArrayList<String> list = new ArrayList<>();
for (int i = 0; i < loopNumber; i++) {
method2(list);
method3(list);
}
}
public void method2(ArrayList
list) { list.add("1");
}
public void method3(ArrayList
list) { list.remove(0);
} }
class ThreadSafeSubClass extends ThreadSafe{
@Override
public void method3(ArrayList
会有线程安全问题
```java
class ThreadSafe {
public final void method1(int loopNumber) {
ArrayList<String> list = new ArrayList<>();
for (int i = 0; i < loopNumber; i++) {
method2(list);
method3(list);
}
}
private void method2(ArrayList<String> list) {
list.add("1");
}
private void method3(ArrayList<String> list) {
list.remove(0);
}
}
class ThreadSafeSubClass extends ThreadSafe{
@Override
public void method3(ArrayList<String> list) {
new Thread(() -> {
list.remove(0);
}).start();
}
}
从这个例子可以看出 private 或 final 提供【安全】的意义所在,请体会开闭原则中的【闭】
常见线程安全类
- String :因为源码是 _private final char _value[];
- Integer
- StringBuffer
- Random
- Vector
- Hashtable
- java.util.concurrent 包下的类
这里说它们是线程安全的是指,多个线程调用它们同一个实例的某个方法时,是线程安全的。也可以理解为
Hashtable table = new Hashtable();
new Thread(()->{
table.put("key", "value1");
}).start();
new Thread(()->{
table.put("key", "value2");
}).start();
- 它们的每个方法是原子的
- 但注意它们多个方法的组合不是原子的,见后面分析
线程安全类方法的组合
分析下面代码是否线程安全?
Hashtable table = new Hashtable();
// 线程1,线程2
if( table.get("key") == null) {
table.put("key", value);
}
不可变类线程安全性
String、Integer 等都是不可变类,因为其内部的状态不可以改变,因此它们的方法都是线程安全的
有同学或许有疑问,String 有 replace,substring 等方法【可以】改变值啊,那么这些方法又是如何保证线程安全的呢?
实例分析
成员变量是否被共享
例1:
public class MyServlet extends HttpServlet {
// 是否安全? 不是
Map<String,Object> map = new HashMap<>();
// 是否安全? 是
String S1 = "...";
// 是否安全?
final String S2 = "...";
// 是否安全?否
Date D1 = new Date();
// 是否安全? 否,日期的属性是可以改的,可变类型是线程不安全的
final Date D2 = new Date();
public void doGet(HttpServletRequest request, HttpServletResponse response) {
// 使用上述变量
}
}
例2:
public class MyServlet extends HttpServlet {
// 是否安全? 不是
private UserService userService = new UserServiceImpl();
public void doGet(HttpServletRequest request, HttpServletResponse response) {
userService.update(...);
}
}
public class UserServiceImpl implements UserService {
// 记录调用次数
private int count = 0;
public void update() {
// ...
count++;
}
}
例3:
@Aspect
@Component
public class MyAspect {
// 是否安全? 否,变量是共享的。写成局部变量才可以
private long start = 0L;
@Before("execution(* *(..))")
public void before() {
start = System.nanoTime();
}
@After("execution(* *(..))")
public void after() {
long end = System.nanoTime();
System.out.println("cost time:" + (end-start));
}
}
例4:
public class MyServlet extends HttpServlet {
// 是否安全 是
private UserService userService = new UserServiceImpl();
public void doGet(HttpServletRequest request, HttpServletResponse response) {
userService.update(...);
}
}
public class UserServiceImpl implements UserService {
// 是否安全 是
private UserDao userDao = new UserDaoImpl();
public void update() {
userDao.update();
}
}
public class UserDaoImpl implements UserDao {
public void update() {
String sql = "update user set password = ? where username = ?";
// 是否安全 是
try (Connection conn = DriverManager.getConnection("","","")){
// ...
} catch (Exception e) {
// ...
}
}
}
例5:
public class MyServlet extends HttpServlet {
// 是否安全
private UserService userService = new UserServiceImpl();
public void doGet(HttpServletRequest request, HttpServletResponse response) {
userService.update(...);
}
}
public class UserServiceImpl implements UserService {
// 是否安全
private UserDao userDao = new UserDaoImpl();
public void update() {
userDao.update();
}
}
public class UserDaoImpl implements UserDao {
// 是否安全 不安全
private Connection conn = null;
public void update() throws SQLException {
String sql = "update user set password = ? where username = ?";
conn = DriverManager.getConnection("","","");
// ...
conn.close();
}
}
例6:
没有线程安全问题
public class MyServlet extends HttpServlet {
// 是否安全
private UserService userService = new UserServiceImpl();
public void doGet(HttpServletRequest request, HttpServletResponse response) {
userService.update(...);
}
}
public class UserServiceImpl implements UserService {
public void update() {
UserDao userDao = new UserDaoImpl();
userDao.update();
}
}
public class UserDaoImpl implements UserDao {
// 是否安全
private Connection = null;
public void update() throws SQLException {
String sql = "update user set password = ? where username = ?";
conn = DriverManager.getConnection("","","");
// ..
conn.close();
}
}
例7:
public abstract class Test {
public void bar() {
// 是否安全 不安全
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
foo(sdf);
}
public abstract foo(SimpleDateFormat sdf);
public static void main(String[] args) {
new Test().bar();
}
}
其中 foo 的行为是不确定的,可能导致不安全的发生,被称之为外星方法
public void foo(SimpleDateFormat sdf) {
String dateStr = "1999-10-11 00:00:00";
for (int i = 0; i < 20; i++) {
new Thread(() -> {
try {
sdf.parse(dateStr);
} catch (ParseException e) {
e.printStackTrace();
}
}).start();
}
}
请比较 JDK 中 String 类的实现
例8:
private static Integer i = 0;
public static void main(String[] args) throws InterruptedException {
List<Thread> list = new ArrayList<>();
for (int j = 0; j < 2; j++) {
Thread thread = new Thread(() -> {
for (int k = 0; k < 5000; k++) {
synchronized (i) {
i++;
}
}
}, "" + j);
list.add(thread);
}
list.stream().forEach(t -> t.start());
list.stream().forEach(t -> {
try {
t.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
});
log.debug("{}", i);
}
4.5 习题
卖票练习
测试下面代码是否存在线程安全问题,并尝试改正
public class ExerciseSell {
public static void main(String[] args) {
TicketWindow ticketWindow = new TicketWindow(2000);
List<Thread> list = new ArrayList<>();
// 用来存储买出去多少张票
List<Integer> sellCount = new Vector<>();
for (int i = 0; i < 2000; i++) {
Thread t = new Thread(() -> {
// 分析这里的竞态条件
int count = ticketWindow.sell(randomAmount());
sellCount.add(count);
});
list.add(t);
t.start();
}
list.forEach((t) -> {
try {
t.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
});
// 买出去的票求和
log.debug("selled count:{}", sellCount.stream().mapToInt(c -> c).sum());
// 剩余票数
log.debug("remainder count:{}", ticketWindow.getCount());
}
// Random 为线程安全
static Random random = new Random();
// 随机 1~5
public static int randomAmount() {
return random.nextInt(5) + 1;
}
}
class TicketWindow {
private int count;
public TicketWindow(int count) {
this.count = count;
}
public int getCount() {
return count;
}
public int sell(int amount) {
if (this.count >= amount) {
this.count -= amount;
return amount;
} else {
return 0;
}
}
}
4.6 Monitor 概念
Java 对象头
以 32 位虚拟机为例
Integer 8字节(对象头) + 4字节(value)
int 4字节
普通对象
对象头(8字节):Mark Word(4字节) + Klass Word(4字节)
数组对象
其中 Mark Word 结构为
64 位虚拟机 Mark Word
参考资料 https://stackoverflow.com/questions/26357186/what-is-in-java-object-header
* 原理之 Monitor(锁)
* 原理之 synchronized
小故事
故事角色
- 老王 - JVM
- 小南 - 线程
- 小女 - 线程
- 房间 - 对象
- 房间门上 - 防盗锁 - Monitor
- 房间门上 - 小南书包 - 轻量级锁
- 房间门上 - 刻上小南大名 - 偏向锁
- 批量重刻名 - 一个类的偏向锁撤销到达 20 阈值
- 不能刻名字 - 批量撤销该类对象的偏向锁,设置该类不可偏向
小南要使用房间保证计算不被其它人干扰(原子性),最初,他用的是防盗锁,当上下文切换时,锁住门。这样, 即使他离开了,别人也进不了门,他的工作就是安全的。
但是,很多情况下没人跟他来竞争房间的使用权。小女是要用房间,但使用的时间上是错开的,小南白天用,小女 晚上用。每次上锁太麻烦了,有没有更简单的办法呢?
小南和小女商量了一下,约定不锁门了,而是谁用房间,谁把自己的书包挂在门口,但他们的书包样式都一样,因 此每次进门前得翻翻书包,看课本是谁的,如果是自己的,那么就可以进门,这样省的上锁解锁了。万一书包不是 自己的,那么就在门外等,并通知对方下次用锁门的方式。
后来,小女回老家了,很长一段时间都不会用这个房间。小南每次还是挂书包,翻书包,虽然比锁门省事了,但仍 然觉得麻烦。
于是,小南干脆在门上刻上了自己的名字:【小南专属房间,其它人勿用】,下次来用房间时,只要名字还在,那 么说明没人打扰,还是可以安全地使用房间。如果这期间有其它人要用这个房间,那么由使用者将小南刻的名字擦 掉,升级为挂书包的方式。
同学们都放假回老家了,小南就膨胀了,在 20 个房间刻上了自己的名字,想进哪个进哪个。后来他自己放假回老 家了,这时小女回来了(她也要用这些房间),结果就是得一个个地擦掉小南刻的名字,升级为挂书包的方式。老 王觉得这成本有点高,提出了一种批量重刻名的方法,他让小女不用挂书包了,可以直接在门上刻上自己的名字
后来,刻名的现象越来越频繁,老王受不了了:算了,这些房间都不能刻名了,只能挂书包
* 原理之 synchronized 进阶
4.7 wait notify
小故事 - 为什么需要 wait
- 由于条件不满足,小南不能继续进行计算
- 但小南如果一直占用着锁,其它人就得一直阻塞,效率太低
- 于是老王单开了一间休息室(调用 wait 方法),让小南到休息室(WaitSet)等着去了,但这时锁释放开, 其它人可以由老王随机安排进屋
- 直到小M将烟送来,大叫一声 [ 你的烟到了 ] (调用 notify 方法)
- 小南于是可以离开休息室,重新进入竞争锁的队列
-
* 原理之 wait / notify
- Owner 线程发现条件不满足,调用 wait 方法,即可进入 WaitSet 变为 WAITING 状态
- BLOCKED 和 WAITING 的线程都处于阻塞状态,不占用 CPU 时间片
- BLOCKED 线程会在 Owner 线程释放锁时唤醒
- WAITING 线程会在 Owner 线程调用 notify 或 notifyAll 时唤醒,但唤醒后并不意味者立刻获得锁,仍需进入 EntryList 重新竞争
BLOCKED 是等待锁,WAITING是获得过锁又放弃了锁
8. 共享模型之工具
8.1 线程池
8.2 J.U.C
7. 线程安全集合类概述
线程安全集合类可以分为三大类:
- 遗留的线程安全集合如 Hashtable , Vector
- 使用 Collections 装饰的线程安全集合,如:
- Collections.synchronizedCollection
- Collections.synchronizedList
- Collections.synchronizedMap
- Collections.synchronizedSet
- Collections.synchronizedNavigableMap
- Collections.synchronizedNavigableSet
- Collections.synchronizedSortedMap
- Collections.synchronizedSortedSet
- java.util.concurrent.*
第二类使用了装饰器的设计模式
重点介绍 java.util.concurrent.* 下的线程安全集合类,可以发现它们有规律,里面包含三类关键词: Blocking、CopyOnWrite、Concurrent
- Blocking 大部分实现基于锁,并提供用来阻塞的方法
- CopyOnWrite 之类容器修改开销相对较重
- Concurrent 类型的容器
- 内部很多操作使用 cas 优化,一般可以提供较高吞吐量
- 弱一致性
- 遍历时弱一致性,例如,当利用迭代器遍历时,如果容器发生修改,迭代器仍然可以继续进行遍 历,这时内容是旧的
- 求大小弱一致性,size 操作未必是 100% 准确
- 读取弱一致性
遍历时如果发生了修改,对于非安全容器来讲,使用 fail-fast 机制也就是让遍历立刻失败,抛出 ConcurrentModificationException,不再继续遍历
8. ConcurrentHashMap
练习:单词计数
生成测试数据
static final String ALPHA = "abcedfghijklmnopqrstuvwxyz";
public static void main(String[] args) {
int length = ALPHA.length();
int count = 200;
List<String> list = new ArrayList<>(length * count);
for (int i = 0; i < length; i++) {
char ch = ALPHA.charAt(i);
for (int j = 0; j < count; j++) {
list.add(String.valueOf(ch));
}
}
Collections.shuffle(list);
for (int i = 0; i < 26; i++) {
try (
PrintWriter out = new PrintWriter(
new OutputStreamWriter(
new FileOutputStream("tmp/" + (i+1) + ".txt")))) {
String collect = list.subList(i * count, (i + 1) * count).stream()
.collect(Collectors.joining("\n"));
out.print(collect);
} catch (IOException e) {
}
}
}
模版代码,模版代码中封装了多线程读取文件的代码
private static <V> void demo(Supplier<Map<String, V>> supplier, BiConsumer<Map<String, V>, List<String>> consumer) {
Map<String, V> counterMap = supplier.get();
// key value
// a 200
// b 200
List<Thread> ts = new ArrayList<>();
for (int i = 1; i <= 26; i++) {
int idx = i;
Thread thread = new Thread(() -> {
List<String> words = readFromFile(idx);
consumer.accept(counterMap, words);
});
ts.add(thread);
}
ts.forEach(t -> t.start());
ts.forEach(t -> {
try {
t.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
});
System.out.println(counterMap);
}
public static List<String> readFromFile(int i) {
ArrayList<String> words = new ArrayList<>();
try (BufferedReader in = new BufferedReader(new InputStreamReader(new FileInputStream("tmp/" + i + ".txt")))) {
while (true) {
String word = in.readLine();
if (word == null) {
break;
}
words.add(word);
}
return words;
} catch (IOException e) {
throw new RuntimeException(e);
}
}
你要做的是实现两个参数
- 一是提供一个 map 集合,用来存放每个单词的计数结果,key 为单词,value 为计数
- 二是提供一组操作,保证计数的安全性,会传递 map 集合以及 单词 List 正确结果输出应该是每个单词出现 200 次
{a=200, b=200, c=200, d=200, e=200, f=200, g=200, h=200, i=200, j=200, k=200, l=200, m=200, n=200, o=200, p=200, q=200, r=200, s=200, t=200, u=200, v=200, w=200, x=200, y=200, z=200}
下面的实现为:
demo(
// 创建 map 集合
// 创建 ConcurrentHashMap 对不对?
() -> new HashMap<String, Integer>(),
// 进行计数
(map, words) -> {
for (String word : words) {
Integer counter = map.get(word);
int newValue = counter == null ? 1 : counter + 1;
map.put(word, newValue);
}
}
);
有没有问题?请改进
参考解答1
demo(
() -> new ConcurrentHashMap<String, LongAdder>(), (map, words) -> {
for (String word : words) {
// 注意不能使用 putIfAbsent,此方法返回的是上一次的 value,首次调用返回 null
map.computeIfAbsent(word, (key) -> new LongAdder()).increment();
}
}
);
参考解答2
demo(
() -> new ConcurrentHashMap<String, Integer>(), (map, words) -> {
for (String word : words) {
// 函数式编程,无需原子变量
map.merge(word, 1, Integer::sum);
}
}
);