理论
当完全聚焦时,图像最清晰,图像中的高频分量也最多,故可将灰度变化作为聚焦评价的依据,灰度方差法的公式如下:
https://blog.csdn.net/Real_Myth/article/details/50827940
代码
def SMD(img):''':param img:narray 二维灰度图像:return: float 图像约清晰越大'''shape = np.shape(img)out = 0for x in range(0, shape[0]-1):for y in range(1, shape[1]):out+=math.fabs(int(img[x,y])-int(img[x,y-1]))out+=math.fabs(int(img[x,y]-int(img[x+1,y])))return out
https://blog.csdn.net/Greepex/article/details/90183018
4. SMD(灰度方差)函数
当完全聚焦时,图像最清晰,图像中的高频分量也最多,故可将灰度变化作为聚焦评价的依据,灰度方差法的公式如下:
代码:
def SMD(img):# 图像的预处理reImg = cv2.resize(img, (800, 900), interpolation=cv2.INTER_CUBIC)img2gray = cv2.cvtColor(reImg, cv2.COLOR_BGR2GRAY) # 将图片压缩为单通道的灰度图f=self._imageToMatrix(img2gray)/255.0x, y = f.shapeD = 0for i in range(x - 1):for j in range(y - 1):D += np.abs(f[i+1,j]-f[i,j])+np.abs(f[i,j]-f[i+1,j])return D
https://gist.github.com/JuneoXIE/d595028586eec752f4352444fc062c44
def _SMDDetection(self, imgName):# step 1 图像的预处理img2gray, reImg = self.preImgOps(imgName)f=self._imageToMatrix(img2gray)/255.0x, y = f.shapescore = 0for i in range(x - 1):for j in range(y - 1):score += np.abs(f[i+1,j]-f[i,j])+np.abs(f[i,j]-f[i+1,j])# strp3: 绘制图片并保存 不应该写在这里 抽象出来 这是共有的部分score=score/100newImg = self._drawImgFonts(reImg, str(score))newDir = self.strDir + "/_SMDDetection_/"if not os.path.exists(newDir):os.makedirs(newDir)newPath = newDir + imgNamecv2.imwrite(newPath, newImg) # 保存图片cv2.imshow(imgName, newImg)cv2.waitKey(0)return score
https://github.com/Leezhen2014/python—/blob/master/BlurDetection.py
