树结构是一种非线性存储结构,存储的是具有“一对多”关系的数据元素的集合。

0944301493-0.png

如图所示:A与B、C、D有关,而B与E、F有关 …,这种储存一对多关系的结构类似右图的树,因此称之为树结构。

树的结点

结点:使用树结构存储的每一个数据元素都被称为“结点”。例如,图中,数据元素 A 就是一个结点;

父结点(双亲结点)、子结点和兄弟结点:对于图中的结点 A、B、C、D 来说,A 是 B、C、D 结点的父结点(也称为“双亲结点”),而 B、C、D 都是 A 结点的子结点(也称“孩子结点”)。对于 B、C、D 来说,它们都有相同的父结点,所以它们互为兄弟结点。

树根结点(简称“根结点”):每一个非空树都有且只有一个被称为根的结点。在图中,结点 A 就是整棵树的根结点。

树根的判断依据为:如果一个结点没有父结点,那么这个结点就是整棵树的根结点。

叶子结点:如果结点没有任何子结点,那么此结点称为叶子结点(叶结点)。在图中,结点 K、L、F、G、M、I、J 都是这棵树的叶子结点。

子树和空树

子树:如图中,整棵树的根结点为结点 A,而如果单看结点 B、E、F、K、L 组成的部分来说,也是棵树,而且节点 B 为这棵树的根结点。所以称 B、E、F、K、L 这几个结点组成的树为整棵树的子树;同样,结点 E、K、L 构成的也是一棵子树,根结点为 E。

注意:单个结点也是一棵树,只不过根结点就是它本身。图中,结点 K、L、F 等都是树,且都是整棵树的子树。

知道了子树的概念后,树也可以这样定义:树是由根结点和若干棵子树构成的。

空树:如果集合本身为空,那么构成的树就被称为空树。空树中没有结点。
补充:在树结构中,对于具有同一个根结点的各个子树,相互之间不能有交集。例如,图中,除了根结点 A,其余元素又各自构成了三个子树,根结点分别为 B、C、D,这三个子树相互之间没有相同的结点。如果有,就破坏了树的结构,不能算做是一棵树。

有序树和无序树

如果树中结点的子树从左到右看,谁在左边,谁在右边,是有规定的,这棵树称为有序树;反之称为无序树。
在有序树中,一个结点最左边的子树称为”第一个孩子”,最右边的称为”最后一个孩子”。
拿图来说,如果是其本身是一棵有序树,则以结点 B 为根结点的子树为整棵树的第一个孩子,以结点 D 为根结点的子树为整棵树的最后一个孩子。