为什么使用线程池
每一个任务创建一个线程来执行存在的问题
- 第一点,反复创建线程系统开销比较大,每个线程创建和销毁都需要时间,如果任务比较简单,那么就有可能导致创建和销毁线程消耗的资源比线程执行任务本身消耗的资源还要大。
- 第二点,过多的线程会占用过多的内存等资源,还会带来过多的上下文切换,同时还会导致系统不稳定。
线程池解决问题思路
- 针对反复创建线程开销大的问题,线程池用一些固定的线程一直保持工作状态并反复执行任务。
针对过多线程占用太多内存资源的问题,解决思路更直接,线程池会根据需要创建线程,控制线程的总数量,避免占用过多内存资源。
线程池的好处
第一点,线程池可以解决线程生命周期的系统开销问题,同时还可以加快响应速度。因为线程池中的线程是可以复用的,我们只用少量的线程去执行大量的任务,这就大大减小了线程生命周期的开销。而且线程通常不是等接到任务后再临时创建,而是已经创建好时刻准备执行任务,这样就消除了线程创建所带来的延迟,提升了响应速度,增强了用户体验。
- 第二点,线程池可以统筹内存和 CPU 的使用,避免资源使用不当。线程池会根据配置和任务数量灵活地控制线程数量,不够的时候就创建,太多的时候就回收,避免线程过多导致内存溢出,或线程太少导致 CPU 资源浪费,达到了一个完美的平衡。
- 第三点,线程池可以统一管理资源。比如线程池可以统一管理任务队列和线程,可以统一开始或结束任务,比单个线程逐一处理任务要更方便、更易于管理,同时也有利于数据统计,比如我们可以很方便地统计出已经执行过的任务的数量。
如何使用线程池
线程池就好比一个池塘,池塘里的水是有限且可控的,比如我们选择线程数固定数量的线程池,假设线程池有 5 个线程,但此时的任务大于 5 个,线程池会让余下的任务进行排队,而不是无限制的扩张线程数量,保障资源不会被过度消耗。
线程池各个参数的含义
如表所示线程池主要有 6 个参数,其中第 3 个参数由 keepAliveTime + 时间单位组成。我们逐一看下它们各自的含义,corePoolSize 是核心线程数,也就是常驻线程池的线程数量,与它对应的是 maximumPoolSize,表示线程池最大线程数量,当我们的任务特别多而 corePoolSize 核心线程数无法满足需求的时候,就会向线程池中增加线程,以便应对任务突增的情况。
线程创建的时机
corePoolSize 与 maximumPoolSize
通过上面的流程图,我们了解了 corePoolSize 和 maximumPoolSize 的具体含义,corePoolSize 指的是核心线程数,线程池初始化时线程数默认为 0,当有新的任务提交后,会创建新线程执行任务,如果不做特殊设置,此后线程数通常不会再小于 corePoolSize ,因为它们是核心线程,即便未来可能没有可执行的任务也不会被销毁。随着任务量的增加,在任务队列满了之后,线程池会进一步创建新线程,最多可以达到 maximumPoolSize 来应对任务多的场景,如果未来线程有空闲,大于 corePoolSize 的线程会被合理回收。所以正常情况下,线程池中的线程数量会处在 corePoolSize 与 maximumPoolSize 的闭区间内。
keepAliveTime+时间单位
第三个参数是 keepAliveTime + 时间单位,当线程池中线程数量多于核心线程数时,而此时又没有任务可做,线程池就会检测线程的 keepAliveTime,如果超过规定的时间,无事可做的线程就会被销毁,以便减少内存的占用和资源消耗。如果后期任务又多了起来,线程池也会根据规则重新创建线程,所以这是一个可伸缩的过程,比较灵活,我们也可以用 setKeepAliveTime 方法动态改变 keepAliveTime 的参数值。
线程池的四种拒绝策略
拒绝任务的时机
- 第一种情况是当我们调用 shutdown 等方法关闭线程池后,即便此时可能线程池内部依然有没执行完的任务正在执行,但是由于线程池已经关闭,此时如果再向线程池内提交任务,就会遭到拒绝。
第二种情况是线程池没有能力继续处理新提交的任务,也就是工作已经非常饱和的时候。
拒绝策略
Java 在 ThreadPoolExecutor 类中为我们提供了 4 种默认的拒绝策略来应对不同的场景,都实现了 RejectedExecutionHandler 接口,如图所示:
第一种拒绝策略是 AbortPolicy,这种拒绝策略在拒绝任务时,会直接抛出一个类型为 RejectedExecutionException 的 RuntimeException,让你感知到任务被拒绝了,于是你便可以根据业务逻辑选择重试或者放弃提交等策略。
- 第二种拒绝策略是 DiscardPolicy,这种拒绝策略正如它的名字所描述的一样,当新任务被提交后直接被丢弃掉,也不会给你任何的通知,相对而言存在一定的风险,因为我们提交的时候根本不知道这个任务会被丢弃,可能造成数据丢失。
- 第三种拒绝策略是 DiscardOldestPolicy,如果线程池没被关闭且没有能力执行,则会丢弃任务队列中的头结点,通常是存活时间最长的任务,这种策略与第二种不同之处在于它丢弃的不是最新提交的,而是队列中存活时间最长的,这样就可以腾出空间给新提交的任务,但同理它也存在一定的数据丢失风险。
- 第四种拒绝策略是 CallerRunsPolicy,相对而言它就比较完善了,当有新任务提交后,如果线程池没被关闭且没有能力执行,则把这个任务交于提交任务的线程执行,也就是谁提交任务,谁就负责执行任务。这样做主要有两点好处。
- 第一点新提交的任务不会被丢弃,这样也就不会造成业务损失。
- 第二点好处是,由于谁提交任务谁就要负责执行任务,这样提交任务的线程就得负责执行任务,而执行任务又是比较耗时的,在这段期间,提交任务的线程被占用,也就不会再提交新的任务,减缓了任务提交的速度,相当于是一个负反馈。在此期间,线程池中的线程也可以充分利用这段时间来执行掉一部分任务,腾出一定的空间,相当于是给了线程池一定的缓冲期。
6种常见的线程池
- FixedThreadPool
- CachedThreadPool
- ScheduledThreadPool
- SingleThreadExecutor
- SingleThreadScheduledExecutor
- ForkJoinPool
线程池种常用的阻塞队列
线程池内部结构
- 第一部分是线程池管理器,它主要负责管理线程池的创建、销毁、添加任务等管理操作,它是整个线程池的管家。
- 第二部分是工作线程,也就是图中的线程 t0~t9,这些线程勤勤恳恳地从任务队列中获取任务并执行。
- 第三部分是任务队列,作为一种缓冲机制,线程池会把当下没有处理的任务放入任务队列中,由于多线程同时从任务队列中获取任务是并发场景,此时就需要任务队列满足线程安全的要求,所以线程池中任务队列采用 BlockingQueue 来保障线程安全。
- 第四部分是任务,任务要求实现统一的接口,以便工作线程可以处理和执行
阻塞队列
LinkedBlockingQueue
对于 FixedThreadPool 和 SingleThreadExector 而言,它们使用的阻塞队列是容量为 Integer.MAX_VALUE 的 LinkedBlockingQueue,可以认为是无界队列。由于 FixedThreadPool 线程池的线程数是固定的,所以没有办法增加特别多的线程来处理任务,这时就需要 LinkedBlockingQueue 这样一个没有容量限制的阻塞队列来存放任务。这里需要注意,由于线程池的任务队列永远不会放满,所以线程池只会创建核心线程数量的线程,所以此时的最大线程数对线程池来说没有意义,因为并不会触发生成多于核心线程数的线程。
SynchronousQueue
第二种阻塞队列是 SynchronousQueue,对应的线程池是 CachedThreadPool。线程池 CachedThreadPool 的最大线程数是 Integer 的最大值,可以理解为线程数是可以无限扩展的。CachedThreadPool 和上一种线程池 FixedThreadPool 的情况恰恰相反,FixedThreadPool 的情况是阻塞队列的容量是无限的,而这里 CachedThreadPool 是线程数可以无限扩展,所以 CachedThreadPool 线程池并不需要一个任务队列来存储任务,因为一旦有任务被提交就直接转发给线程或者创建新线程来执行,而不需要另外保存它们。
我们自己创建使用 SynchronousQueue 的线程池时,如果不希望任务被拒绝,那么就需要注意设置最大线程数要尽可能大一些,以免发生任务数大于最大线程数时,没办法把任务放到队列中也没有足够线程来执行任务的情况。
DelayedWorkQueue
第三种阻塞队列是DelayedWorkQueue,它对应的线程池分别是 ScheduledThreadPool 和 SingleThreadScheduledExecutor,这两种线程池的最大特点就是可以延迟执行任务,比如说一定时间后执行任务或是每隔一定的时间执行一次任务。DelayedWorkQueue 的特点是内部元素并不是按照放入的时间排序,而是会按照延迟的时间长短对任务进行排序,内部采用的是“堆”的数据结构。之所以线程池 ScheduledThreadPool 和 SingleThreadScheduledExecutor 选择DelayedWorkQueue,是因为它们本身正是基于时间执行任务的,而延迟队列正好可以把任务按时间进行排序,方便任务的执行。
为什么不应该自动创建线程池
FixedThreadPool
线程数量是有限制的,但是任务队列是没有限制的,如果任务过多,会占用大量的内存,发生OOM
SingleThreadExecutor
和FixedThreadPool一样,任务队列也是没有上限的,容易出现OOM
CachedThreadPool
这种方式创建的线程池,虽然任务队列是有限的,但是线程的数量是Integer的最大值,当线程过多的时候回超过系统的上限而无法创建线程或者最终导致内存不足。
ScheduledThreadPool 和 SingleThreadScheduledExecutor
同样的可以认为线程的数量是无限的。
合适的线程数量是多少
CPU密集型任务
首先,我们来看 CPU 密集型任务,比如加密、解密、压缩、计算等一系列需要大量耗费 CPU 资源的任务。对于这样的任务最佳的线程数为 CPU 核心数的 1~2 倍,如果设置过多的线程数,实际上并不会起到很好的效果。此时假设我们设置的线程数量是 CPU 核心数的 2 倍以上,因为计算任务非常重,会占用大量的 CPU 资源,所以这时 CPU 的每个核心工作基本都是满负荷的,而我们又设置了过多的线程,每个线程都想去利用 CPU 资源来执行自己的任务,这就会造成不必要的上下文切换,此时线程数的增多并没有让性能提升,反而由于线程数量过多会导致性能下降。
耗时IO型任务
第二种任务是耗时 IO 型,比如数据库、文件的读写,网络通信等任务,这种任务的特点是并不会特别消耗 CPU 资源,但是 IO 操作很耗时,总体会占用比较多的时间。对于这种任务最大线程数一般会大于 CPU 核心数很多倍,因为 IO 读写速度相比于 CPU 的速度而言是比较慢的,如果我们设置过少的线程数,就可能导致 CPU 资源的浪费。而如果我们设置更多的线程数,那么当一部分线程正在等待 IO 的时候,它们此时并不需要 CPU 来计算,那么另外的线程便可以利用 CPU 去执行其他的任务,互不影响,这样的话在任务队列中等待的任务就会减少,可以更好地利用资源。
推荐的计算方式
线程数 = CPU 核心数 *(1+平均等待时间/平均工作时间)
如何正确的关闭线程池
与关闭线程池有关的五种方法
- void shutdown;
- boolean isShutdown;
- boolean isTermianter;
- boolean awaitTermination(long timeout, TimeUnit unit) throw InterruptedException;
- List
shutdownNow; shutdown()
第一种方法叫作 shutdown(),它可以安全地关闭一个线程池,调用 shutdown() 方法之后线程池并不是立刻就被关闭,因为这时线程池中可能还有很多任务正在被执行,或是任务队列中有大量正在等待被执行的任务,调用 shutdown() 方法后线程池会在执行完正在执行的任务和队列中等待的任务后才彻底关闭。但这并不代表 shutdown() 操作是没有任何效果的,调用 shutdown() 方法后如果还有新的任务被提交,线程池则会根据拒绝策略直接拒绝后续新提交的任务。
isShutdown()
第二个方法叫作 isShutdown(),它可以返回 true 或者 false 来判断线程池是否已经开始了关闭工作,也就是是否执行了 shutdown 或者 shutdownNow 方法。这里需要注意,如果调用 isShutdown() 方法的返回的结果为 true 并不代表线程池此时已经彻底关闭了,这仅仅代表线程池开始了关闭的流程,也就是说,此时可能线程池中依然有线程在执行任务,队列里也可能有等待被执行的任务。
isTerminated()
第三种方法叫作 isTerminated(),这个方法可以检测线程池是否真正“终结”了,这不仅代表线程池已关闭,同时代表线程池中的所有任务都已经都执行完毕了,因为我们刚才说过,调用 shutdown 方法之后,线程池会继续执行里面未完成的任务,不仅包括线程正在执行的任务,还包括正在任务队列中等待的任务。比如此时已经调用了 shutdown 方法,但是有一个线程依然在执行任务,那么此时调用 isShutdown 方法返回的是 true ,而调用 isTerminated 方法返回的便是 false ,因为线程池中还有任务正在在被执行,线程池并没有真正“终结”。直到所有任务都执行完毕了,调用 isTerminated() 方法才会返回 true,这表示线程池已关闭并且线程池内部是空的,所有剩余的任务都执行完毕了。
awaitTermination()
第四个方法叫作 awaitTermination(),它本身并不是用来关闭线程池的,而是主要用来判断线程池状态的。比如我们给 awaitTermination 方法传入的参数是 10 秒,那么它就会陷入 10 秒钟的等待,直到发生以下三种情况之一:
- 等待期间(包括进入等待状态之前)线程池已关闭并且所有已提交的任务(包括正在执行的和队列中等待的)都执行完毕,相当于线程池已经“终结”了,方法便会返回 true;
- 等待超时时间到后,第一种线程池“终结”的情况始终未发生,方法返回 false;
- 等待期间线程被中断,方法会抛出 InterruptedException 异常。
也就是说,调用 awaitTermination 方法后当前线程会尝试等待一段指定的时间,如果在等待时间内,线程池已关闭并且内部的任务都执行完毕了,也就是说线程池真正“终结”了,那么方法就返回 true,否则超时返回 fasle。 我们则可以根据 awaitTermination() 返回的布尔值来判断下一步应该执行的操作。
shutdownNow()
最后一个方法是 shutdownNow(),也是 5 种方法里功能最强大的,它与第一种 shutdown 方法不同之处在于名字中多了一个单词 Now,也就是表示立刻关闭的意思。在执行 shutdownNow 方法之后,首先会给所有线程池中的线程发送 interrupt 中断信号,尝试中断这些任务的执行,然后会将任务队列中正在等待的所有任务转移到一个 List 中并返回,我们可以根据返回的任务 List 来进行一些补救的操作,例如记录在案并在后期重试。
线程池实现复用的原理
线程池创建新线程的时机和规则
线程复用源码分析
查看线程池的execute方法
再看Worker类中的run方法
可以看出,实现线程复用的逻辑主要在一个不停循环的 while 循环体中。
- 通过取 Worker 的 firstTask 或者通过 getTask 方法从 workQueue 中获取待执行的任务。
- 直接调用 task 的 run 方法来执行具体的任务(而不是新建线程)。