2. AQS
2.1 AQS原理
2.1.1 概述
全称是 AbstractQueuedSynchronizer,是阻塞式锁和相关的同步器工具的框架
2.2.2 特点
- 用 state 属性来表示资源的状态(分独占模式和共享模式),子类需要定义如何维护这个状态,控制如何获取锁和释放锁
- getState - 获取 state 状态
- setState - 设置 state 状态
- compareAndSetState - cas 机制设置 state 状态
- 独占模式是只有一个线程能够访问资源,而共享模式可以允许多个线程访问资源
- 提供了基于 FIFO 的等待队列,类似于 Monitor 的 EntryList
- 条件变量来实现等待、唤醒机制,支持多个条件变量,类似于 Monitor 的 WaitSet
子类主要实现这样一些方法(默认抛出 UnsupportedOperationException)
- tryAcquire
- tryRelease
- tryAcquireShared
- tryReleaseShared
- isHeldExclusively ```java // 获取锁的姿势 // 如果获取锁失败 if (!tryAcquire(arg)) { // 入队, 可以选择阻塞当前线程 park unpark }
// 释放锁的姿势 // 如果释放锁成功 if (tryRelease(arg)) { // 让阻塞线程恢复运行 }
<a name="nycyv"></a>
### 2.2.3 自定义锁
下面实现一个不可重入的阻塞式锁:使用 AbstractQueuedSynchronizer 自定义一个同步器来实现自定义锁,代码如下:
```java
@Slf4j(topic = "c.Test2")
public class Test2 {
public static void main(String[] args) {
MyLock lock = new MyLock();
new Thread(()->{
lock.lock();
try {
Thread.sleep(1000);
log.debug("locking...");
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
log.debug("unlocking....");
}
}, "t1").start();
new Thread(()->{
lock.lock();
try {
log.debug("locking...");
} finally {
lock.unlock();
log.debug("unlocking....");
}
}, "t2").start();
}
}
// 自定义锁,不可重复锁
class MyLock implements Lock {
// 独占锁 ,同步器类
class MySync extends AbstractQueuedSynchronizer{
@Override // 尝试获得锁 0无锁 1加上锁
protected boolean tryAcquire(int arg) {
if (compareAndSetState(0 ,1)){
// 加上了锁,并设置owner为当前线程
setExclusiveOwnerThread(Thread.currentThread());
}
return true;
}
@Override //尝试释放锁
protected boolean tryRelease(int arg) {
setExclusiveOwnerThread(null);
setState(0); // 这一步要在后面,state是volatile的保证前面属性的可见性
return true;
}
@Override //是否持有独占锁
protected boolean isHeldExclusively() {
return getState() == 1;
}
public Condition newCondition(){
return new ConditionObject();
}
}
private MySync mySync = new MySync();
@Override //加锁(不成功进入等待队列)
public void lock() {
mySync.acquire(1);
}
@Override // 加锁, 可打断
public void lockInterruptibly() throws InterruptedException {
mySync.acquireInterruptibly(1);
}
@Override // 尝试加锁,一次
public boolean tryLock() {
return mySync.tryAcquire(1);
}
@Override // 尝试加锁,带超时
public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {
return mySync.tryAcquireNanos(1, unit.toNanos(time));
}
@Override // 解锁
public void unlock() {
mySync.release(1);
}
@Override // 创建条件变量
public Condition newCondition() {
return mySync.newCondition();
}
12:34:21.191 [t2] DEBUG c.Test2 - locking...
12:34:21.193 [t2] DEBUG c.Test2 - unlocking....
12:34:22.189 [t1] DEBUG c.Test2 - locking...
12:34:22.189 [t1] DEBUG c.Test2 - unlocking....
2.2 ReentrantLock原理
ReentrantLock 提供了抽象的Sync(继承了AQS),并实现了两个同步器,实现公平锁(FairSync)和非公平锁(NonfairSync),默认是非公平锁,实现了Lock接口
2.2.1 构造器
带参数和不带参数的构造器,不带参默认为非公平的
public ReentrantLock() {
sync = new NonfairSync();
}
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}
2.2.2 加锁过程
NonfairSync 继承自 Sync 继承自AQS
static final class NonfairSync extends Sync {
private static final long serialVersionUID = 7316153563782823691L;
/**
* Performs lock. Try immediate barge, backing up to normal
* acquire on failure.
*/
final void lock() {
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
acquire(1);
}
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
}
没有竞争时:
有竞争时:调用acquire方法
public final void acquire(int arg) {
// 没有重新加锁成功 且 将其加入到等待队列
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
- lock方法中CAS 尝试将 state 由 0 改为 1,结果失败lock方法中进一步调用acquire方法,进入 tryAcquire 逻辑,这里我们认为这时 state 已经是1,结果仍然失败
- 接下来进入 acquire方法的addWaiter 逻辑,构造 Node 队列
- 图中黄色三角表示该 Node 的 waitStatus 状态,其中 0 为默认正常状态
- Node 的创建是懒惰的
- 其中第一个 Node 称为 Dummy(哑元)或哨兵,用来占位,并不关联线程
acquireQueued方法:
当前线程进入 acquire方法的 acquireQueued 逻辑
- acquireQueued 会在一个死循环中不断尝试获得锁,失败后进入 park 阻塞
- 如果自己是紧邻着 head(排第二位),那么再次 tryAcquire 尝试获取锁,我们这里设置这时 state 仍为 1,失败
- 进入 shouldParkAfterFailedAcquire 逻辑,将前驱 node,即 head 的 waitStatus 改为 -1,这次返回 false(意思就是你尝试了好几次都没获得锁,就进入阻塞,让前面那个节点唤醒你)
- shouldParkAfterFailedAcquire 执行完毕回到 acquireQueued ,再次 tryAcquire 尝试获取锁,当然这时 state 仍为 1,失败
- 当再次进入 shouldParkAfterFailedAcquire 时,这时因为其前驱 node 的 waitStatus 已经是 -1,这次返回 true
- 进入 parkAndCheckInterrupt, Thread-1 park(灰色表示已经阻塞)
再从次有多个线程经历上述过程竞争失败,变成这个样子
源码:
// Sync 继承自 AQS
static final class NonfairSync extends Sync {
private static final long serialVersionUID = 7316153563782823691L;
// 加锁实现
final void lock() {
// 首先用 cas 尝试(仅尝试一次)将 state 从 0 改为 1, 如果成功表示获得了独占锁
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
// 如果尝试失败,进入 ㈠
acquire(1);
}
// ㈠ AQS 继承过来的方法, 方便阅读, 放在此处 尝试加锁失败的过程
public final void acquire(int arg) {
// ㈡ tryAcquire
if (
// 再次尝试获取锁
!tryAcquire(arg) &&
// 当 tryAcquire 返回为 false 时, 先调用 addWaiter ㈣, 接着 acquireQueued ㈤
acquireQueued(addWaiter(Node.EXCLUSIVE), arg)
) {
selfInterrupt();
}
}
// ㈡ 进入 ㈢
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
// ㈢ Sync 继承过来的方法, 方便阅读, 放在此处
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
// 如果还没有获得锁
if (c == 0) {
// 尝试用 cas 获得, 这里体现了非公平性: 不去检查 AQS 队列
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
// 如果已经获得了锁, 线程还是当前线程, 表示发生了锁重入
else if (current == getExclusiveOwnerThread()) {
// state++
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
// 获取失败, 回到调用处
return false;
}
// ㈣ AQS 继承过来的方法, 方便阅读, 放在此处 将该节点放到等待队列中
private Node addWaiter(Node mode) {
// 将当前线程关联到一个 Node 对象上, 模式为独占模式,新建的Node的waitstatus默认为0,因为waitstatus是成员变量,默认被初始化为0
Node node = new Node(Thread.currentThread(), mode);
// 如果 tail 不为 null, cas 尝试将 Node 对象加入 AQS 队列尾部
Node pred = tail;
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
// 双向链表
pred.next = node;
return node;
}
}
//如果tail为null,尝试将 Node 加入 AQS, 进入 ㈥
enq(node);
return node;
}
// ㈥ AQS 继承过来的方法, 方便阅读, 放在此处
private Node enq(final Node node) {
for (;;) {
Node t = tail;
if (t == null) {
// 还没有, 设置 head 为哨兵节点(不对应线程,状态为 0)
if (compareAndSetHead(new Node())) {
tail = head;
}
} else {
// cas 尝试将 Node 对象加入 AQS 队列尾部
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}
// ㈤ AQS 继承过来的方法, 方便阅读, 放在此处 对等待队列进行处理
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
// 上一个节点是 head, 表示轮到自己(当前线程对应的 node)了, 尝试获取
if (p == head && tryAcquire(arg)) {
// 获取成功, 设置自己(当前线程对应的 node)为 head
setHead(node);
// 上一个节点 help GC
p.next = null;
failed = false;
// 返回中断标记 false
return interrupted;
}
if (
// 判断是否应当 park, 进入 ㈦
shouldParkAfterFailedAcquire(p, node) &&
// park 等待, 此时 Node 的状态被置为 Node.SIGNAL ㈧
parkAndCheckInterrupt()
) {
interrupted = true;
}
}
} finally {
if (failed)
cancelAcquire(node);
}
}
// ㈦ AQS 继承过来的方法, 方便阅读, 放在此处 是否需要在获取失败时被阻塞
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
// 获取上一个节点的状态
int ws = pred.waitStatus;
if (ws == Node.SIGNAL) {
// 上一个节点都在阻塞, 那么自己也阻塞好了
return true;
}
// > 0 表示取消状态
if (ws > 0) {
// 上一个节点取消, 那么重构删除前面所有取消的节点, 返回到外层循环重试
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
// 这次还没有阻塞
// 但下次如果重试不成功, 则需要阻塞,这时需要设置上一个节点状态为 Node.SIGNAL
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}
// ㈧ 阻塞当前线程
private final boolean parkAndCheckInterrupt() {
LockSupport.park(this);
return Thread.interrupted();
}
}
2.2.3 释放锁流程
Thread-0 释放锁,进入 tryRelease 流程,如果成功
- 设置 exclusiveOwnerThread 为 null
- state = 0
如果当前队列不为 null,并且 head 的 waitStatus = -1,进入 unparkSuccessor 流程:
- unparkSuccessor 中会找到队列中离 head 最近的一个 Node(没取消的),unpark 恢复其运行,本例中即为 Thread-1
- 回到 Thread-1 的 acquireQueued 流程
如果加锁成功(没有竞争),会设置 (acquireQueued 方法中)
- exclusiveOwnerThread 为 Thread-1,state = 1
- head 指向刚刚 Thread-1 所在的 Node,该 Node 清空 Thread
- 原本的 head 因为从链表断开,而可被垃圾回收
如果这时候有其它线程来竞争(非公平的体现),例如这时有 Thread-4 来了
- Thread-4 被设置为 exclusiveOwnerThread,state = 1
Thread-1 再次进入 acquireQueued 流程,获取锁失败,重新进入 park 阻塞 ```java // Sync 继承自 AQS static final class NonfairSync extends Sync { // 解锁实现 public void unlock() {
sync.release(1);
}
// AQS 继承过来的方法, 方便阅读, 放在此处 public final boolean release(int arg) {
// 尝试释放锁, 进入 ㈠
if (tryRelease(arg)) {
// 队列头节点 unpark
Node h = head;
if (
// 队列不为 null
h != null &&
// waitStatus == Node.SIGNAL 才需要 unpark
h.waitStatus != 0
) {
// unpark AQS 中等待的线程, 进入 ㈡
unparkSuccessor(h);
}
return true;
}
return false;
}
// ㈠ Sync 继承过来的方法, 方便阅读, 放在此处 protected final boolean tryRelease(int releases) {
// state--
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
// 支持锁重入, 只有 state 减为 0, 才释放成功
if (c == 0) {
free = true;
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}
// ㈡ AQS 继承过来的方法, 方便阅读, 放在此处 private void unparkSuccessor(Node node) {
// 如果状态为 Node.SIGNAL 尝试重置状态为 0, 如果线程获取到了锁那么后来头结点会被抛弃掉
// 不成功也可以
int ws = node.waitStatus;
if (ws < 0) {
compareAndSetWaitStatus(node, ws, 0);
}
// 找到需要 unpark 的节点, 但本节点从 AQS 队列中脱离, 是由唤醒节点完成的
Node s = node.next;
// 不考虑已取消的节点, 从 AQS 队列从后至前找到队列最前面需要 unpark 的节点
if (s == null || s.waitStatus > 0) {
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
if (s != null)
LockSupport.unpark(s.thread);
} }
<a name="hkJVf"></a>
### 2.2.4 锁重入原理
如果是同一个线程,则将state++;释放后,会将state--。如果state为0,才会释放锁。
```java
static final class NonfairSync extends Sync {
// ...
// Sync 继承过来的方法, 方便阅读, 放在此处 不公平的获取锁的方式
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
// 如果c为0,表示没有线程加锁,那么该线程进行加锁
if (compareAndSetState(0, acquires)) {
// 设置锁头信息 owner
setExclusiveOwnerThread(current);
return true;
}
}
// 如果已经获得了锁, 线程还是当前线程, 表示发生了锁重入,更新state
else if (current == getExclusiveOwnerThread()) {
// state++
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
// Sync 继承过来的方法, 方便阅读, 放在此处 释放锁
protected final boolean tryRelease(int releases) {
// state--
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
// c不为0,还是当前线程的锁,返回释放失败。
boolean free = false;
// 支持锁重入, 只有 state 减为 0, 才释放成功
if (c == 0) {
// 返回释放成功,并将owner置为null
free = true;
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}
}
2.2.5 可打断原理
- 不可打断模式:
在此模式下,即使它被打断,仍会驻留在 AQS 队列中,一直要等到获得锁后方能得知自己被打断了。
// Sync 继承自 AQS
static final class NonfairSync extends Sync {
// ...
private final boolean parkAndCheckInterrupt() {
// 如果打断标记已经是 true, 则 park 会失效
LockSupport.park(this);
// interrupted 会清除打断标记
return Thread.interrupted();
}
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null;
failed = false;
// 还是需要获得锁后, 才能返回打断状态
return interrupted;
}
if (
shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt()
) {
// 如果是因为 interrupt 被唤醒, 返回打断状态为 true
interrupted = true;
}
}
} finally {
if (failed)
cancelAcquire(node);
}
}
public final void acquire(int arg) {
if (
!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg)
) {
// 如果打断状态为 true
selfInterrupt();
}
}
static void selfInterrupt() {
// 重新产生一次中断,这时候线程是如果正常运行的状态,那么不是出于sleep等状态,interrupt方法就不会报错
Thread.currentThread().interrupt();
}
}
}
可打断模式: ```java static final class NonfairSync extends Sync { public final void acquireInterruptibly(int arg) throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
// 如果没有获得到锁, 进入 ㈠
if (!tryAcquire(arg))
doAcquireInterruptibly(arg);
}
// ㈠ 可打断的获取锁流程 private void doAcquireInterruptibly(int arg) throws InterruptedException {
final Node node = addWaiter(Node.EXCLUSIVE);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt()) {
// 在 park 过程中如果被 interrupt 会进入此
// 这时候抛出异常, 而不会再次进入 for (;;)
throw new InterruptedException();
}
}
} finally {
if (failed)
cancelAcquire(node);
}
} }
区别在于不可打断模式是将打断标记置为true,再次进入for循环(在AQS队列中);可打断模式直接抛出异常,不会进入for循环。
<a name="qzarC"></a>
### 2.2.6 公平锁原理
非公平锁主要区别在于 tryAcquire 方法的实现:在加锁之前会判断AQS队列有没有前驱结点
```java
static final class FairSync extends Sync {
private static final long serialVersionUID = -3000897897090466540L;
final void lock() {
acquire(1);
}
// AQS 继承过来的方法, 方便阅读, 放在此处
public final void acquire(int arg) {
if (
!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg)
) {
selfInterrupt();
}
}
// 与非公平锁主要区别在于 tryAcquire 方法的实现
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
// 先检查 AQS 队列中是否有前驱节点, 没有才去竞争
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
// ㈠ AQS 继承过来的方法, 方便阅读, 放在此处
public final boolean hasQueuedPredecessors() {
Node t = tail;
Node h = head;
Node s;
// h != t 时表示队列中有 Node
return h != t &&
(
// (s = h.next) == null 表示队列中还有没有老二
(s = h.next) == null || // 或者队列中老二线程不是此线程
s.thread != Thread.currentThread()
);
}
}
2.2.7 条件变量实现原理
每个条件变量其实就对应着一个等待队列,其实现类是 ConditionObject
- await流程
开始 Thread-0 持有锁,调用 await,进入 ConditionObject 的 addConditionWaiter 流程 创建新的Node 状态为 -2(Node.CONDITION),关联 Thread-0,加入等待队列尾部
接下来进入 AQS 的 fullyRelease 流程,释放同步器上的锁
unpark AQS 队列中的下一个节点,竞争锁,假设没有其他竞争线程,那么 Thread-1 竞争成功
park 阻塞 Thread-0
- signal流程
假设 Thread-1 要来唤醒 Thread-0
进入 ConditionObject 的 doSignal 流程,取得等待队列中第一个 Node,即 Thread-0 所在 Node
执行 transferForSignal 流程,将该 Node 加入 AQS 队列尾部,将 Thread-0 的 waitStatus 改为 0,Thread-3 的waitStatus 改为 -1
Thread-1 释放锁,进入 unlock 流程。
public class ConditionObject implements Condition, java.io.Serializable {
private static final long serialVersionUID = 1173984872572414699L;
// 第一个等待节点
private transient Node firstWaiter;
// 最后一个等待节点
private transient Node lastWaiter;
public ConditionObject() { }
// ㈠ 添加一个 Node 至等待队列
private Node addConditionWaiter() {
Node t = lastWaiter;
// 所有已取消的 Node 从队列链表删除, 见 ㈡
if (t != null && t.waitStatus != Node.CONDITION) {
unlinkCancelledWaiters();
t = lastWaiter;
}
// 创建一个关联当前线程的新 Node, 添加至队列尾部
Node node = new Node(Thread.currentThread(), Node.CONDITION);
if (t == null)
firstWaiter = node;
else
t.nextWaiter = node;
lastWaiter = node;
return node;
}
// 唤醒 - 将没取消的第一个节点转移至 AQS 队列
private void doSignal(Node first) {
do {
// 已经是尾节点了
if ( (firstWaiter = first.nextWaiter) == null) {
lastWaiter = null;
}
first.nextWaiter = null;
} while (
// 将等待队列中的 Node 转移至 AQS 队列, 不成功且还有节点则继续循环 ㈢
!transferForSignal(first) &&
// 队列还有节点
(first = firstWaiter) != null
);
}
// 外部类方法, 方便阅读, 放在此处
// ㈢ 如果节点状态是取消, 返回 false 表示转移失败, 否则转移成功
final boolean transferForSignal(Node node) {
// 设置当前node状态为0(因为处在队列末尾),如果状态已经不是 Node.CONDITION, 说明被取消了
if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
return false;
// 加入 AQS 队列尾部
Node p = enq(node);
int ws = p.waitStatus;
if (
// 插入节点的上一个节点被取消
ws > 0 ||
// 插入节点的上一个节点不能设置状态为 Node.SIGNAL
!compareAndSetWaitStatus(p, ws, Node.SIGNAL)
) {
// unpark 取消阻塞, 让线程重新同步状态
LockSupport.unpark(node.thread);
}
return true;
}
// 全部唤醒 - 等待队列的所有节点转移至 AQS 队列
private void doSignalAll(Node first) {
lastWaiter = firstWaiter = null;
do {
Node next = first.nextWaiter;
first.nextWaiter = null;
transferForSignal(first);
first = next;
} while (first != null);
}
// ㈡
private void unlinkCancelledWaiters() {
// ...
}
// 唤醒 - 必须持有锁才能唤醒, 因此 doSignal 内无需考虑加锁
public final void signal() {
// 如果没有持有锁,会抛出异常
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
Node first = firstWaiter;
if (first != null)
doSignal(first);
}
// 全部唤醒 - 必须持有锁才能唤醒, 因此 doSignalAll 内无需考虑加锁
public final void signalAll() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
Node first = firstWaiter;
if (first != null)
doSignalAll(first);
}
// 不可打断等待 - 直到被唤醒
public final void awaitUninterruptibly() {
// 添加一个 Node 至等待队列, 见 ㈠
Node node = addConditionWaiter();
// 释放节点持有的锁, 见 ㈣
int savedState = fullyRelease(node);
boolean interrupted = false;
// 如果该节点还没有转移至 AQS 队列, 阻塞
while (!isOnSyncQueue(node)) {
// park 阻塞
LockSupport.park(this);
// 如果被打断, 仅设置打断状态
if (Thread.interrupted())
interrupted = true;
}
// 唤醒后, 尝试竞争锁, 如果失败进入 AQS 队列
if (acquireQueued(node, savedState) || interrupted)
selfInterrupt();
}
// 外部类方法, 方便阅读, 放在此处
// ㈣ 因为某线程可能重入,需要将 state 全部释放,获取state,然后把它全部减掉,以全部释放
final int fullyRelease(Node node) {
boolean failed = true;
try {
int savedState = getState();
// 唤醒等待队列队列中的下一个节点
if (release(savedState)) {
failed = false;
return savedState;
} else {
throw new IllegalMonitorStateException();
}
} finally {
if (failed)
node.waitStatus = Node.CANCELLED;
}
}
// 打断模式 - 在退出等待时重新设置打断状态
private static final int REINTERRUPT = 1;
// 打断模式 - 在退出等待时抛出异常
private static final int THROW_IE = -1;
// 判断打断模式
private int checkInterruptWhileWaiting(Node node) {
return Thread.interrupted() ?
(transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) :
0;
}
// ㈤ 应用打断模式
private void reportInterruptAfterWait(int interruptMode)
throws InterruptedException {
if (interruptMode == THROW_IE)
throw new InterruptedException();
else if (interruptMode == REINTERRUPT)
selfInterrupt();
}
// 等待 - 直到被唤醒或打断
public final void await() throws InterruptedException {
if (Thread.interrupted()) {
throw new InterruptedException();
}
// 添加一个 Node 至等待队列, 见 ㈠
Node node = addConditionWaiter();
// 释放节点持有的锁
int savedState = fullyRelease(node);
int interruptMode = 0;
// 如果该节点还没有转移至 AQS 队列, 阻塞
while (!isOnSyncQueue(node)) {
// park 阻塞
LockSupport.park(this);
// 如果被打断, 退出等待队列
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
}
// 退出等待队列后, 还需要获得 AQS 队列的锁
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
// 所有已取消的 Node 从队列链表删除, 见 ㈡
if (node.nextWaiter != null)
unlinkCancelledWaiters();
// 应用打断模式, 见 ㈤
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
}
// 等待 - 直到被唤醒或打断或超时
public final long awaitNanos(long nanosTimeout) throws InterruptedException {
if (Thread.interrupted()) {
throw new InterruptedException();
}
// 添加一个 Node 至等待队列, 见 ㈠
Node node = addConditionWaiter();
// 释放节点持有的锁
int savedState = fullyRelease(node);
// 获得最后期限
final long deadline = System.nanoTime() + nanosTimeout;
int interruptMode = 0;
// 如果该节点还没有转移至 AQS 队列, 阻塞
while (!isOnSyncQueue(node)) {
// 已超时, 退出等待队列
if (nanosTimeout <= 0L) {
transferAfterCancelledWait(node);
break;
}
// park 阻塞一定时间, spinForTimeoutThreshold 为 1000 ns
if (nanosTimeout >= spinForTimeoutThreshold)
LockSupport.parkNanos(this, nanosTimeout);
// 如果被打断, 退出等待队列
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
nanosTimeout = deadline - System.nanoTime();
}
// 退出等待队列后, 还需要获得 AQS 队列的锁
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
// 所有已取消的 Node 从队列链表删除, 见 ㈡
if (node.nextWaiter != null)
unlinkCancelledWaiters();
// 应用打断模式, 见 ㈤
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
return deadline - System.nanoTime();
}
// 等待 - 直到被唤醒或打断或超时, 逻辑类似于 awaitNanos
public final boolean awaitUntil(Date deadline) throws InterruptedException {
// ...
}
// 等待 - 直到被唤醒或打断或超时, 逻辑类似于 awaitNanos
public final boolean await(long time, TimeUnit unit) throws InterruptedException {
// ...
}
// 工具方法 省略 ...
}
2.3 读写锁
2.3.1 ReentrantReadWriteLock
当读操作远远高于写操作时,这时候使用读写锁让读-读可以并发,提高性能。读-写,写-写都是相互互斥的!
提供一个数据容器类内部分别使用读锁保护数据的read()方法,写锁保护数据的write()方法 。
读-读测试:
@Slf4j(topic = "c.Test3")
public class Test3 {
public static void main(String[] args) {
DataContainer d = new DataContainer();
new Thread(()->{
d.read();
}, "t1").start();
new Thread(()->{
d.read();
}, "t2").start();
}
}
// 创建读写锁
@Slf4j(topic = "c.DataContainer")
class DataContainer {
private Object data;
private ReentrantReadWriteLock rw = new ReentrantReadWriteLock();
private ReentrantReadWriteLock.ReadLock r = rw.readLock();
private ReentrantReadWriteLock.WriteLock w = rw.writeLock();
public Object read(){
log.debug("获取读锁");
r.lock();
try {
log.debug("读取");
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
log.debug("释放读锁");
r.unlock();
}
return data;
}
public void write(){
log.debug("获取写锁");
w.lock();
try {
log.debug("写入");
}finally {
log.debug("释放写锁");
w.unlock();
}
}
17:48:25.705 [t2] DEBUG c.DataContainer - 获取读锁
17:48:25.705 [t1] DEBUG c.DataContainer - 获取读锁
17:48:25.708 [t2] DEBUG c.DataContainer - 读取
17:48:25.708 [t1] DEBUG c.DataContainer - 读取
17:48:26.712 [t1] DEBUG c.DataContainer - 释放读锁
17:48:26.712 [t2] DEBUG c.DataContainer - 释放读锁
读是并发的
读写实例
public static void main(String[] args) throws InterruptedException {
DataContainer d = new DataContainer();
new Thread(() -> {
d.read();
}, "t1").start();
Thread.sleep(100);
new Thread(() -> {
d.write();
}, "t2").start();
}
17:50:56.087 [t1] DEBUG c.DataContainer - 获取读锁
17:50:56.090 [t1] DEBUG c.DataContainer - 读取
17:50:56.191 [t2] DEBUG c.DataContainer - 获取写锁
17:50:57.095 [t1] DEBUG c.DataContainer - 释放读锁
17:50:57.095 [t2] DEBUG c.DataContainer - 写入
17:50:57.095 [t2] DEBUG c.DataContainer - 释放写锁
可以看到读与写是互斥的,只有读锁先释放,才能拿到写锁
写-写
@Slf4j(topic = "c.Test3")
public class Test3 {
public static void main(String[] args) throws InterruptedException {
DataContainer d = new DataContainer();
new Thread(() -> {
d.write();
}, "t1").start();
Thread.sleep(100);
new Thread(() -> {
d.write();
}, "t2").start();
}
}
// 创建读写锁
@Slf4j(topic = "c.DataContainer")
class DataContainer {
private Object data;
private ReentrantReadWriteLock rw = new ReentrantReadWriteLock();
private ReentrantReadWriteLock.ReadLock r = rw.readLock();
private ReentrantReadWriteLock.WriteLock w = rw.writeLock();
public Object read() {
log.debug("获取读锁");
r.lock();
try {
log.debug("读取");
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
log.debug("释放读锁");
r.unlock();
}
return data;
}
public void write() {
log.debug("获取写锁");
w.lock();
try {
log.debug("写入");
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
log.debug("释放写锁");
w.unlock();
}
}
}
18:06:20.475 [t1] DEBUG c.DataContainer - 获取写锁
18:06:20.480 [t1] DEBUG c.DataContainer - 写入
18:06:20.575 [t2] DEBUG c.DataContainer - 获取写锁
18:06:21.485 [t1] DEBUG c.DataContainer - 释放写锁
18:06:21.486 [t2] DEBUG c.DataContainer - 写入
18:06:22.490 [t2] DEBUG c.DataContainer - 释放写锁
2.3.2 读写锁注意事项
- 读锁不支持条件变量
- 重入时升级不支持:即持有读锁的情况下去获取写锁,会导致获取写锁永久等待
```java
r.lock();
try {
} finally{// ...
w.lock();
try {
// ...
} finally{
w.unlock();
}
}r.unlock();
3. 重入时降级支持:即持有写锁的情况下去获取读锁
```java
class CachedData {
Object data;
// 是否有效,如果失效,需要重新计算 data
volatile boolean cacheValid;
final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
void processCachedData() {
rwl.readLock().lock();
if (!cacheValid) {
// 获取写锁前必须释放读锁
rwl.readLock().unlock();
rwl.writeLock().lock();
try {
// 判断是否有其它线程已经获取了写锁、更新了缓存, 避免重复更新
if (!cacheValid) {
data = ...
cacheValid = true;
}
// 降级为读锁, 释放写锁, 这样能够让其它线程读取缓存
rwl.readLock().lock();
} finally {
rwl.writeLock().unlock();
}
}
// 自己用完数据, 释放读锁
try {
use(data);
} finally {
rwl.readLock().unlock();
}
}
}
2.3.3 应用之缓存
缓存更新策略:更新时,是先清缓存还是先更新数据库?
先清除缓存操作如下:
先更新数据库操作如下:
补充一种情况,假设查询线程 A 查询数据时恰好缓存数据由于时间到期失效,或是第一次查询:这种情况的出现几率非常小:
/**
* ReentrantReadWriteLock 读写锁解决 缓存与数据库一致性问题
*/
public class Code_13_ReadWriteCacheTest {
public static void main(String[] args) {
GeneriCacheDao<Object> generiCacheDao = new GeneriCacheDao<>();
Object[] objects = new Object[2];
generiCacheDao.queryOne(Object.class,"Test",objects);
generiCacheDao.queryOne(Object.class,"Test",objects);
generiCacheDao.queryOne(Object.class,"Test",objects);
generiCacheDao.queryOne(Object.class,"Test",objects);
System.out.println(generiCacheDao.map);
generiCacheDao.update("Test",objects);
System.out.println(generiCacheDao.map);
}
}
class GeneriCacheDao<T> extends GenericDao {
HashMap<SqlPair, T> map = new HashMap<>();
ReentrantReadWriteLock lock = new ReentrantReadWriteLock();
GenericDao genericDao = new GenericDao();
@Override
public int update(String sql, Object... params){
lock.writeLock().lock();
SqlPair sqlPair = new SqlPair(sql, params);
try {
// 先查询数据库再更新缓存,但是这里加了锁,谁先谁后都没关系
int update = genericDao.update(sql, params);
map.clear();
return update;
} finally {
lock.writeLock().unlock();
}
}
@Override
public T queryOne(Class beanClass, String sql, Object... params){
SqlPair key = new SqlPair(sql, params);
// 加读锁, 防止其它线程对缓存更改
lock.readLock().lock();
try {
T t = map.get(key);
if (t != null){
return t;
}
} finally {
lock.readLock().unlock();
}
// 加写锁, 防止其它线程对缓存读取和更改
lock.writeLock().lock();
// get 方法上面部分是可能多个线程进来的, 可能已经向缓存填充了数据
// 为防止重复查询数据库, 再次验证
try {
T value = map.get(key);
if (value == null){
value = (T) genericDao.queryOne(beanClass, sql, params);
map.put(key, value);
}
return value;
} finally {
lock.writeLock().unlock();
}
}
class SqlPair{
private String sql;
private Object[] params;
public SqlPair(String sql, Object[] params) {
this.sql = sql;
this.params = params;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
SqlPair sqlMap = (SqlPair) o;
return Objects.equals(sql, sqlMap.sql) &&
Arrays.equals(params, sqlMap.params);
}
@Override
public int hashCode() {
int result = Objects.hash(sql);
result = 31 * result + Arrays.hashCode(params);
return result;
}
}
}
class GenericDao<T>{
public int update(String sql, Object... params){
return 1;
}
public T queryOne(Class<T> beanClass, String sql, Object... params){
System.out.println("查询数据库中");
return (T) new Object();
}
}
2.3.4 读写锁原理
图解流程
读写锁用的是同一个 Sync 同步器,因此等待队列、state 等也是同一个
下面执行:t1 w.lock,t2 r.lock 情况
- t1 成功上锁,流程与 ReentrantLock 加锁相比没有特殊之处,不同是写锁状态占了 state 的低 16 位,而读锁使用的是 state 的高 16 位
- t2 执行 r.lock,这时进入读锁的 sync.acquireShared(1) 流程,首先会进入 tryAcquireShared 流程。如果有写锁占据,那么 tryAcquireShared 返回 -1 表示失败。tryAcquireShared 返回值表示
- -1 表示失败
- 0 表示成功,但后继节点不会继续唤醒
- 正数表示成功,而且数值是还有几个后继节点需要唤醒,我们这里的读写锁返回 1
- 这时会进入 sync.doAcquireShared(1) 流程,首先也是调用 addWaiter 添加节点,不同之处在于节点被设置为 Node.SHARED 模式而非 Node.EXCLUSIVE 模式,注意此时 t2 仍处于活跃状态
- t2 会看看自己的节点是不是老二,如果是,还会再次调用 tryAcquireShared(1) 来尝试获取锁
- 如果没有成功,在 doAcquireShared 内 for (;;) 循环一次,把前驱节点的 waitStatus 改为 -1,再 for (;;) 循环一次尝试 tryAcquireShared(1) 如果还不成功,那么在 parkAndCheckInterrupt() 处 park。
又继续执行:t3 r.lock,t4 w.lock。这种状态下,假设又有 t3 加读锁和 t4 加写锁,这期间 t1 仍然持有锁,就变成了下面的样子
继续执行 t1 w.unlock
这时会走到写锁的 sync.release(1) 流程,调用 sync.tryRelease(1) 成功,变成下面的样子
接下来执行唤醒流程 sync.unparkSuccessor,即让老二恢复运行,这时 t2 在 doAcquireShared 内 parkAndCheckInterrupt() 处恢复运行,图中的t2从黑色变成了蓝色(注意这里只是恢复运行而已,并没有获取到锁!) 这回再来一次 for (;; ) 执行 tryAcquireShared 成功则让读锁计数加
这时 t2 已经恢复运行,接下来 t2 调用 setHeadAndPropagate(node, 1),它原本所在节点被置为头节点
事情还没完,在 setHeadAndPropagate 方法内还会检查下一个节点是否是 shared,如果是则调用 doReleaseShared() 将 head 的状态从 -1 改为 0 并唤醒老二,这时 t3 在 doAcquireShared 内 parkAndCheckInterrupt() 处恢复运行.(读锁是共享的,不是独占的,多个线程都能读)
这回再来一次 for (;; ) 执行 tryAcquireShared 成功则让读锁计数加一
这时 t3 已经恢复运行,接下来 t3 调用 setHeadAndPropagate(node, 1),它原本所在节点被置为头节点
再继续执行t2 r.unlock,t3 r.unlock 。t2进入 sync.releaseShared(1) 中,调用 tryReleaseShared(1) 让计数减一,但由于计数还不为零
t3 进入 sync.releaseShared(1) 中,调用 tryReleaseShared(1) 让计数减一,这回计数为零了,进入 doReleaseShared() 将头节点从 -1 改为 0 并唤醒老二,即
之后 t4 在 acquireQueued 中 parkAndCheckInterrupt 处恢复运行,再次 for (;; ) 这次自己是老二,并且没有其他 竞争,tryAcquire(1) 成功,修改头结点,流程结束
源码分析
写锁上锁流程 ```java static final class NonfairSync extends Sync { // … 省略无关代码
// 外部类 WriteLock 方法, 方便阅读, 放在此处 public void lock() {
sync.acquire(1);
}
// AQS 继承过来的方法, 方便阅读, 放在此处 public final void acquire(int arg) {
if (
// 尝试获得写锁失败
!tryAcquire(arg) &&
// 将当前线程关联到一个 Node 对象上, 模式为独占模式
// 进入 AQS 队列阻塞
acquireQueued(addWaiter(Node.EXCLUSIVE), arg)
) {
selfInterrupt();
}
}
// Sync 继承过来的方法, 方便阅读, 放在此处 protected final boolean tryAcquire(int acquires) {
// 获得低 16 位, 代表写锁的 state 计数
Thread current = Thread.currentThread();
int c = getState();
int w = exclusiveCount(c);
if (c != 0) {
if (
// c != 0 and w == 0 表示有读锁返回错误,读锁不支持锁升级, 或者
w == 0 ||
// c != 0 and w != 0 表示有写锁,如果 exclusiveOwnerThread 不是自己
current != getExclusiveOwnerThread()
) {
// 获得锁失败
return false;
}
// 写锁计数超过低 16 位, 报异常
if (w + exclusiveCount(acquires) > MAX_COUNT)
throw new Error("Maximum lock count exceeded");
// 写锁重入, 获得锁成功
setState(c + acquires);
return true;
}
if (
// 判断写锁是否该阻塞这里返回false, 或者
writerShouldBlock() ||
// 尝试更改计数失败
!compareAndSetState(c, c + acquires)
) {
// 获得锁失败
return false;
}
// 获得锁成功
setExclusiveOwnerThread(current);
return true;
}
// 非公平锁 writerShouldBlock 总是返回 false, 无需阻塞 final boolean writerShouldBlock() {
return false;
} }
- 写锁释放过程
```java
static final class NonfairSync extends Sync {
// ... 省略无关代码
// WriteLock 方法, 方便阅读, 放在此处
public void unlock() {
sync.release(1);
}
// AQS 继承过来的方法, 方便阅读, 放在此处
public final boolean release(int arg) {
// 尝试释放写锁成功
if (tryRelease(arg)) {
// unpark AQS 中等待的线程
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
// Sync 继承过来的方法, 方便阅读, 放在此处
protected final boolean tryRelease(int releases) {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
int nextc = getState() - releases;
// 因为可重入的原因, 写锁计数为 0, 才算释放成功
boolean free = exclusiveCount(nextc) == 0;
if (free) {
setExclusiveOwnerThread(null);
}
setState(nextc);
return free;
}
}
读锁上锁过程 ```java static final class NonfairSync extends Sync {
// ReadLock 方法, 方便阅读, 放在此处 public void lock() {
sync.acquireShared(1);
}
// AQS 继承过来的方法, 方便阅读, 放在此处 public final void acquireShared(int arg) {
// tryAcquireShared 返回负数, 表示获取读锁失败
if (tryAcquireShared(arg) < 0) {
doAcquireShared(arg);
}
}
// Sync 继承过来的方法, 方便阅读, 放在此处 protected final int tryAcquireShared(int unused) {
Thread current = Thread.currentThread();
int c = getState();
// 如果是其它线程持有写锁, 获取读锁失败
if (
exclusiveCount(c) != 0 &&
getExclusiveOwnerThread() != current
) {
return -1;
}
int r = sharedCount(c);
if (
// 读锁不该阻塞(如果老二是写锁,读锁该阻塞), 并且
!readerShouldBlock() &&
// 小于读锁计数, 并且
r < MAX_COUNT &&
// 尝试增加计数成功
compareAndSetState(c, c + SHARED_UNIT)
) {
// ... 省略不重要的代码
return 1;
}
return fullTryAcquireShared(current);
}
// 非公平锁 readerShouldBlock 看 AQS 队列中第一个节点是否是写锁 // true 则该阻塞, false 则不阻塞 final boolean readerShouldBlock() {
return apparentlyFirstQueuedIsExclusive();
}
// AQS 继承过来的方法, 方便阅读, 放在此处 // 与 tryAcquireShared 功能类似, 但会不断尝试 for (;;) 获取读锁, 执行过程中无阻塞 final int fullTryAcquireShared(Thread current) {
HoldCounter rh = null;
for (;;) {
int c = getState();
if (exclusiveCount(c) != 0) {
if (getExclusiveOwnerThread() != current)
return -1;
} else if (readerShouldBlock()) {
// ... 省略不重要的代码
}
if (sharedCount(c) == MAX_COUNT)
throw new Error("Maximum lock count exceeded");
if (compareAndSetState(c, c + SHARED_UNIT)) {
// ... 省略不重要的代码
return 1;
}
}
}
// AQS 继承过来的方法, 方便阅读, 放在此处 private void doAcquireShared(int arg) {
// 将当前线程关联到一个 Node 对象上, 模式为共享模式
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head) {
// 再一次尝试获取读锁
int r = tryAcquireShared(arg);
// 成功
if (r >= 0) {
// ㈠
// r 表示可用资源数, 在这里总是 1 允许传播
//(唤醒 AQS 中下一个 Share 节点)
setHeadAndPropagate(node, r);
p.next = null; // help GC
if (interrupted)
selfInterrupt();
failed = false;
return;
}
}
if (
// 是否在获取读锁失败时阻塞(前一个阶段 waitStatus == Node.SIGNAL)
shouldParkAfterFailedAcquire(p, node) &&
// park 当前线程
parkAndCheckInterrupt()
) {
interrupted = true;
}
}
} finally {
if (failed)
cancelAcquire(node);
}
}
// ㈠ AQS 继承过来的方法, 方便阅读, 放在此处 private void setHeadAndPropagate(Node node, int propagate) {
Node h = head; // Record old head for check below
// 设置自己为 head
setHead(node);
// propagate 表示有共享资源(例如共享读锁或信号量)
// 原 head waitStatus == Node.SIGNAL 或 Node.PROPAGATE
// 现在 head waitStatus == Node.SIGNAL 或 Node.PROPAGATE
if (propagate > 0 || h == null || h.waitStatus < 0 ||
(h = head) == null || h.waitStatus < 0) {
Node s = node.next;
// 如果是最后一个节点或者是等待共享读锁的节点
if (s == null || s.isShared()) {
// 进入 ㈡
doReleaseShared();
}
}
}
// ㈡ AQS 继承过来的方法, 方便阅读, 放在此处 private void doReleaseShared() {
// 如果 head.waitStatus == Node.SIGNAL ==> 0 成功, 下一个节点 unpark
// 如果 head.waitStatus == 0 ==> Node.PROPAGATE, 为了解决 bug, 见后面分析,参考这里:http://www.tianxiaobo.com/2018/05/01/AbstractQueuedSynchronizer-%E5%8E%9F%E7%90%86%E5%88%86%E6%9E%90-%E7%8B%AC%E5%8D%A0-%E5%85%B1%E4%BA%AB%E6%A8%A1%E5%BC%8F/#5propagate-%E7%8A%B6%E6%80%81%E5%AD%98%E5%9C%A8%E7%9A%84%E6%84%8F%E4%B9%89
for (;;) {
Node h = head;
// 队列还有节点
if (h != null && h != tail) {
int ws = h.waitStatus;
if (ws == Node.SIGNAL) {
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
continue; // loop to recheck cases
// 下一个节点 unpark 如果成功获取读锁
// 并且下下个节点还是 shared, 继续 doReleaseShared
unparkSuccessor(h);
}
else if (ws == 0 &&
!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
continue; // loop on failed CAS
}
if (h == head) // loop if head changed
break;
}
} }
- 读锁释放过程:
```java
static final class NonfairSync extends Sync {
// ReadLock 方法, 方便阅读, 放在此处
public void unlock() {
sync.releaseShared(1);
}
// AQS 继承过来的方法, 方便阅读, 放在此处
public final boolean releaseShared(int arg) {
if (tryReleaseShared(arg)) {
doReleaseShared();
return true;
}
return false;
}
// Sync 继承过来的方法, 方便阅读, 放在此处
protected final boolean tryReleaseShared(int unused) {
// ... 省略不重要的代码
for (;;) {
int c = getState();
int nextc = c - SHARED_UNIT;
if (compareAndSetState(c, nextc)) {
// 读锁的计数不会影响其它获取读锁线程, 但会影响其它获取写锁线程
// 计数为 0 才是真正释放
return nextc == 0;
}
}
}
// AQS 继承过来的方法, 方便阅读, 放在此处
private void doReleaseShared() {
// 如果 head.waitStatus == Node.SIGNAL ==> 0 成功, 下一个节点 unpark
// 如果 head.waitStatus == 0 ==> Node.PROPAGATE
for (;;) {
Node h = head;
if (h != null && h != tail) {
int ws = h.waitStatus;
// 如果有其它线程也在释放读锁,那么需要将 waitStatus 先改为 0
// 防止 unparkSuccessor 被多次执行
if (ws == Node.SIGNAL) {
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
continue; // loop to recheck cases
unparkSuccessor(h);
}
// 如果已经是 0 了,改为 -3,用来解决传播性,见后文信号量 bug 分析
else if (ws == 0 &&
!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
continue; // loop on failed CAS
}
if (h == head) // loop if head changed
break;
}
}
}
2.3.5 StampedLock
该类自 JDK 8 加入,是为了进一步优化读性能,它的特点是在使用读锁、写锁时都必须配合【戳】使用。StampedLock 不支持条件变量;StampedLock 不支持可重入
- 加解读锁 ```java long stamp = lock.readLock(); lock.unlockRead(stamp);
- 加解写锁
```java
long stamp = lock.writeLock();
lock.unlockWrite(stamp);
- 乐观读,StampedLock 支持 tryOptimisticRead() 方法(乐观读),读取完毕后需要做一次 戳校验 如果校验通 过,表示这期间确实没有写操作,数据可以安全使用,如果校验没通过,需要重新获取读锁,保证数据安全。 ```java long stamp = lock.tryOptimisticRead(); // 验戳 if(!lock.validate(stamp)){ // 锁升级 }
- 代码示例:
提供一个 数据容器类 内部分别使用读锁保护数据的 read() 方法,写锁保护数据的 write() 方法。
```java
public class Code_14_StampedLockTest {
public static void main(String[] args) throws InterruptedException {
StampedLockDataContainer dataContainer = new StampedLockDataContainer(1);
Thread t1 = new Thread(() -> {
try {
System.out.println(dataContainer.read(1));
} catch (InterruptedException e) {
e.printStackTrace();
}
}, "t1");
t1.start();
TimeUnit.MILLISECONDS.sleep(500);
Thread t2 = new Thread(() -> {
// try {
// dataContainer.read(0);
// } catch (InterruptedException e) {
// e.printStackTrace();
// }
dataContainer.write(10);
}, "t2");
t2.start();
}
}
@Slf4j(topic = "c.StampedLockDataContainer")
class StampedLockDataContainer {
private int data;
private StampedLock stampedLock = new StampedLock();
public StampedLockDataContainer(int data) {
this.data = data;
}
public int read(int readTime) throws InterruptedException {
long stamp = stampedLock.tryOptimisticRead();
log.info("optimistic read locking ...{}", stamp);
Thread.sleep(readTime * 1000);
if(stampedLock.validate(stamp)) {
log.info("read finish... {}", stamp);
return data;
}
// 锁升级 - 读锁
log.info("update to read lock ...");
try {
stamp = stampedLock.readLock();
log.info("read lock {}", stamp);
Thread.sleep(readTime * 1000);
log.info("read finish ... {}", stamp);
return data;
} finally {
stampedLock.unlockRead(stamp);
}
}
public void write(int newData) {
long stamp = stampedLock.writeLock();
try {
log.info("write lock {}", stamp);
this.data = newData;
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
log.info("write finish ... {}", stamp);
log.info("write newData ... {}", this.data);
} finally {
stampedLock.unlockWrite(stamp);
}
}
}
2.4 Semaphore信号量
2.4.1 基本使用
信号量,用来限制能同时访问共享资源的线程上限。
@Slf4j(topic = "c.Test4")
public class Test4 {
public static void main(String[] args) {
// 创建 semaphore对象
// 同时运行的上限是3个
Semaphore semaphore = new Semaphore(3);
// 创建10个线程同时运行
for (int i = 0; i < 10; i++) {
new Thread(()->{
// 获取许可
try {
semaphore.acquire();
} catch (InterruptedException e) {
e.printStackTrace();
}
// 运行
log.debug("running");
try {
Thread.sleep(1000);
log.debug("end...");
} catch (InterruptedException e) {
e.printStackTrace();
}finally {
// 释放许可
semaphore.release();
}
}).start();
}
}
}
16:56:59.721 [Thread-0] DEBUG c.Test4 - running
16:56:59.721 [Thread-2] DEBUG c.Test4 - running
16:56:59.721 [Thread-1] DEBUG c.Test4 - running
16:57:00.730 [Thread-1] DEBUG c.Test4 - end...
16:57:00.731 [Thread-2] DEBUG c.Test4 - end...
16:57:00.731 [Thread-0] DEBUG c.Test4 - end...
16:57:00.731 [Thread-3] DEBUG c.Test4 - running
16:57:00.731 [Thread-5] DEBUG c.Test4 - running
16:57:00.732 [Thread-4] DEBUG c.Test4 - running
16:57:01.736 [Thread-5] DEBUG c.Test4 - end...
16:57:01.736 [Thread-4] DEBUG c.Test4 - end...
16:57:01.736 [Thread-3] DEBUG c.Test4 - end...
16:57:01.736 [Thread-6] DEBUG c.Test4 - running
16:57:01.736 [Thread-7] DEBUG c.Test4 - running
16:57:01.736 [Thread-8] DEBUG c.Test4 - running
16:57:02.740 [Thread-8] DEBUG c.Test4 - end...
16:57:02.740 [Thread-7] DEBUG c.Test4 - end...
16:57:02.740 [Thread-6] DEBUG c.Test4 - end...
16:57:02.741 [Thread-9] DEBUG c.Test4 - running
16:57:03.744 [Thread-9] DEBUG c.Test4 - end...
2.4.2 图解流程
Semaphore 有点像一个停车场,permits 就好像停车位数量,当线程获得了 permits 就像是获得了停车位,然后停车场显示空余车位减一刚开始,permits(state)为 3,这时 5 个线程来获取资源。
假设其中 Thread-1,Thread-2,Thread-4 cas 竞争成功,而 Thread-0 和 Thread-3 竞争失败,进入 AQS 队列park 阻塞
这时 Thread-4 释放了 permits,状态如下
接下来 Thread-0 竞争成功,permits 再次设置为 0,设置自己为 head 节点,断开原来的 head 节点,unpark 接下来的 Thread-3 节点,但由于 permits 是 0,因此 Thread-3 在尝试不成功后再次进入 park 状态
2.4.3 源码
static final class NonfairSync extends Sync {
private static final long serialVersionUID = -2694183684443567898L;
NonfairSync(int permits) {
// permits 即 state
super(permits);
}
// Semaphore 方法, 方便阅读, 放在此处
public void acquire() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}
// AQS 继承过来的方法, 方便阅读, 放在此处
public final void acquireSharedInterruptibly(int arg)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
if (tryAcquireShared(arg) < 0)
doAcquireSharedInterruptibly(arg);
}
// 尝试获得共享锁
protected int tryAcquireShared(int acquires) {
return nonfairTryAcquireShared(acquires);
}
// Sync 继承过来的方法, 方便阅读, 放在此处
final int nonfairTryAcquireShared(int acquires) {
for (;;) {
int available = getState();
int remaining = available - acquires;
if (
// 如果许可已经用完, 返回负数, 表示获取失败, 进入 doAcquireSharedInterruptibly
remaining < 0 ||
// 如果 cas 重试成功, 返回正数, 表示获取成功
compareAndSetState(available, remaining)
) {
return remaining;
}
}
}
// AQS 继承过来的方法, 方便阅读, 放在此处
private void doAcquireSharedInterruptibly(int arg) throws InterruptedException {
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head) {
// 再次尝试获取许可
int r = tryAcquireShared(arg);
if (r >= 0) {
// 成功后本线程出队(AQS), 所在 Node设置为 head
// 如果 head.waitStatus == Node.SIGNAL ==> 0 成功, 下一个节点 unpark
// 如果 head.waitStatus == 0 ==> Node.PROPAGATE
// r 表示可用资源数, 为 0 则不会继续传播
setHeadAndPropagate(node, r);
p.next = null; // help GC
failed = false;
return;
}
}
// 不成功, 设置上一个节点 waitStatus = Node.SIGNAL, 下轮进入 park 阻塞
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
// Semaphore 方法, 方便阅读, 放在此处
public void release() {
sync.releaseShared(1);
}
// AQS 继承过来的方法, 方便阅读, 放在此处
public final boolean releaseShared(int arg) {
if (tryReleaseShared(arg)) {
doReleaseShared();
return true;
}
return false;
}
// Sync 继承过来的方法, 方便阅读, 放在此处
protected final boolean tryReleaseShared(int releases) {
for (;;) {
int current = getState();
int next = current + releases;
if (next < current) // overflow
throw new Error("Maximum permit count exceeded");
if (compareAndSetState(current, next))
return true;
}
}
}
2.5 CountdownLatch 倒计时锁
- CountDownLatch 允许多线程阻塞在一个地方,直至所有线程的任务都执行完毕。在 Java 并发中,countdownlatch 的概念是一个常见的面试题,所以一定要确保你很好的理解了它。
- CountDownLatch 是共享锁的一种实现,它默认构造 AQS 的 state 值为 count。当线程使用 countDown方法时,其实使用了 tryReleaseShared 方法以CAS 的操作来减少 state ,直至 state 为 0 就代表所有的线程都调用了countDown方法。当调用 await 方法的时候,如果 state 不为0,就代表仍然有线程没有调用 countDown 方法,那么就把已经调用过 countDown 的线程都放入阻塞队列 Park ,并自旋 CAS 判断 state == 0,直至最后一个线程调用了 countDown ,使得 state == 0,于是阻塞的线程便判断成功,全部往下执行。
用来进行线程同步协作,等待所有线程完成倒计时。 其中构造参数用来初始化等待计数值,await() 用来等待计数归零,countDown() 用来让计数减一。
@Slf4j(topic = "c.test5")
public class Test5 {
public static void main(String[] args) throws InterruptedException {
CountDownLatch latch = new CountDownLatch(3);
new Thread(()->{
log.debug("begin..");
try {
Thread.sleep(1000);
latch.countDown();
log.debug("end...,{}",latch.getCount());
} catch (InterruptedException e) {
e.printStackTrace();
}
}).start();
new Thread(()->{
log.debug("begin..");
try {
Thread.sleep(2000);
latch.countDown();
log.debug("end...,{}",latch.getCount());
} catch (InterruptedException e) {
e.printStackTrace();
}
}).start();
new Thread(()->{
log.debug("begin..");
try {
Thread.sleep(1500);
latch.countDown();
log.debug("end...,{}",latch.getCount());
} catch (InterruptedException e) {
e.printStackTrace();
}
}).start();
log.debug("等待...");
latch.await();
log.debug("等待结束");
}
}
17:31:13.539 [Thread-1] DEBUG c.test5 - begin..
17:31:13.539 [Thread-2] DEBUG c.test5 - begin..
17:31:13.539 [main] DEBUG c.test5 - 等待...
17:31:13.539 [Thread-0] DEBUG c.test5 - begin..
17:31:14.546 [Thread-0] DEBUG c.test5 - end...,2
17:31:15.045 [Thread-2] DEBUG c.test5 - end...,1
17:31:15.547 [Thread-1] DEBUG c.test5 - end...,0
17:31:15.547 [main] DEBUG c.test5 - 等待结束
每一个线程会countDown一次,最终到0为止
使用线程池
@Slf4j(topic = "c.test5")
public class Test5 {
public static void main(String[] args) throws InterruptedException {
CountDownLatch latch = new CountDownLatch(3);
ExecutorService service = Executors.newFixedThreadPool(4);
service.submit(()->{
log.debug("begin..");
try {
Thread.sleep(1000);
latch.countDown();
log.debug("end...,{}",latch.getCount());
} catch (InterruptedException e) {
e.printStackTrace();
}
});
service.submit(()->{
log.debug("begin..");
try {
Thread.sleep(2000);
latch.countDown();
log.debug("end...,{}",latch.getCount());
} catch (InterruptedException e) {
e.printStackTrace();
}
});
service.submit(()->{
log.debug("begin..");
try {
Thread.sleep(1500);
latch.countDown();
log.debug("end...,{}",latch.getCount());
} catch (InterruptedException e) {
e.printStackTrace();
}
});
service.submit(()->{
log.debug("等待...");
try {
latch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
log.debug("等待结束");
});
}
}
17:34:34.681 [pool-1-thread-3] DEBUG c.test5 - begin..
17:34:34.681 [pool-1-thread-1] DEBUG c.test5 - begin..
17:34:34.681 [pool-1-thread-2] DEBUG c.test5 - begin..
17:34:34.681 [pool-1-thread-4] DEBUG c.test5 - 等待...
17:34:35.690 [pool-1-thread-1] DEBUG c.test5 - end...,2
17:34:36.190 [pool-1-thread-3] DEBUG c.test5 - end...,1
17:34:36.690 [pool-1-thread-2] DEBUG c.test5 - end...,0
17:34:36.690 [pool-1-thread-4] DEBUG c.test5 - 等待结束
2.6 CyclicBarrier
循环栅栏,用来进行线程协作,等待线程满足某个计数。构造时设置『计数个数』,每个线程执行到某个需要“同步”的时刻调用 await() 方法进行等待,当等待的线程数满足『计数个数』时,继续执行。跟 CountdownLatch 一样,但这个可以重用。
public static void main(String[] args) {
ExecutorService executorService = Executors.newFixedThreadPool(2);
CyclicBarrier cyclicBarrier = new CyclicBarrier(2, () -> {
log.info("task2 finish ...");
});
for(int i = 0; i < 3; i++) {
executorService.submit(() -> {
log.info("task1 begin ...");
try {
Thread.sleep(1000);
cyclicBarrier.await();
} catch (InterruptedException | BrokenBarrierException e) {
e.printStackTrace();
}
});
executorService.submit(() -> {
log.info("task2 begin ...");
try {
Thread.sleep(2000);
cyclicBarrier.await();
} catch (InterruptedException | BrokenBarrierException e) {
e.printStackTrace();
}
});
}
executorService.shutdown();
}