认识Disruptor
Disruptor是一个开源框架,研发的初衷是为了解决高并发下列队锁的问题,最早由LMAX(一种新型零售金融交易平台)提出并使用,能够在无锁的情况下实现队列的并发操作,并号称能够在一个线程里每秒处理6百万笔订单(这个真假就不清楚了!牛皮谁都会吹)。
框架最经典也是最多的应用场景:生产消费。
讲到生产消费模型,大家应该马上就能回忆起前面我们已经学习过的BlockingQueue课程,里面我们学习过多种队列,但是这些队列大多是基于条件阻塞方式的,性能还不够优秀!
核心设计原理
Disruptor通过以下设计来解决队列速度慢的问题:
- 环形数组结构:
为了避免垃圾回收,采用数组而非链表。同时,数组对处理器的缓存机制更加友好(回顾一下:CPU加载空间局部性原则)。
- 元素位置定位:
数组长度2^n,通过位运算,加快定位的速度。下标采取递增的形式。不用担心index溢出的问题。index是long类型,即使100万QPS的处理速度,也需要30万年才能用完。
- 无锁设计:
每个生产者或者消费者线程,会先申请可以操作的元素在数组中的位置,申请到之后,直接在该位置写入或者读取数据。
数据结构
框架使用RingBuffer来作为队列的数据结构,RingBuffer就是一个可自定义大小的环形数组。除数组外还有一个序列号(sequence),用以指向下一个可用的元素,供生产者与消费者使用。原理图如下所示:
Sequence
mark:Disruptor通过顺序递增的序号来编号管理通过其进行交换的数据(事件),对数据(事件)的处理过程总是沿着序号逐个递增处理。
数组+序列号设计的优势是什么呢?
回顾一下我们讲HashMap时,在知道索引(index)下标的情况下,存与取数组上的元素时间复杂度只有O(1),而这个index我们可以通过序列号与数组的长度取模来计算得出,index=sequence % table.length。当然也可以用位运算来计算效率更高,此时table.length必须是2的幂次方(原理前面讲过)。
概念与作用
- RingBuffer——Disruptor底层数据结构实现,核心类,是线程间交换数据的中转地;
- Sequencer——序号管理器,生产同步的实现者,负责消费者/生产者各自序号、序号栅栏的管理和协调,Sequencer有单生产者,多生产者两种不同的模式,里面实现了各种同步的算法;
- Sequence——序号,声明一个序号,用于跟踪ringbuffer中任务的变化和消费者的消费情况,disruptor里面大部分的并发代码都是通过对Sequence的值同步修改实现的,而非锁,这是disruptor高性能的一个主要原因;
- SequenceBarrier——序号栅栏,管理和协调生产者的游标序号和各个消费者的序号,确保生产者不会覆盖消费者未来得及处理的消息,确保存在依赖的消费者之间能够按照正确的顺序处理, Sequence Barrier是由Sequencer创建的,并被Processor持有;
- EventProcessor——事件处理器,监听RingBuffer的事件,并消费可用事件,从RingBuffer读取的事件会交由实际的生产者实现类来消费;它会一直侦听下一个可用的序号,直到该序号对应的事件已经准备好。
- EventHandler——业务处理器,是实际消费者的接口,完成具体的业务逻辑实现,第三方实现该接口;代表着消费者。
- Producer——生产者接口,第三方线程充当该角色,producer向RingBuffer写入事件。
- Wait Strategy:Wait Strategy决定了一个消费者怎么等待生产者将事件(Event)放入Disruptor中。

等待策略
BlockingWaitStrategy
Disruptor的默认策略是BlockingWaitStrategy。在BlockingWaitStrategy内部是使用锁和condition来控制线程的唤醒。BlockingWaitStrategy是最低效的策略,但其对CPU的消耗最小并且在各种不同部署环境中能提供更加一致的性能表现。
SleepingWaitStrategy
SleepingWaitStrategy 的性能表现跟 BlockingWaitStrategy 差不多,对 CPU 的消耗也类似,但其对生产者线程的影响最小,通过使用LockSupport.parkNanos(1)来实现循环等待。一般来说Linux系统会暂停一个线程约60µs,这样做的好处是,生产线程不需要采取任何其他行动就可以增加适当的计数器,也不需要花费时间信号通知条件变量。但是,在生产者线程和使用者线程之间移动事件的平均延迟会更高。它在不需要低延迟并且对生产线程的影响较小的情况最好。一个常见的用例是异步日志记录。
YieldingWaitStrategy
YieldingWaitStrategy是可以使用在低延迟系统的策略之一。YieldingWaitStrategy将自旋以等待序列增加到适当的值。在循环体内,将调用Thread.yield(),以允许其他排队的线程运行。在要求极高性能且事件处理线数小于 CPU 逻辑核心数的场景中,推荐使用此策略;例如,CPU开启超线程的特性。
BusySpinWaitStrategy
性能最好,适合用于低延迟的系统。在要求极高性能且事件处理线程数小于CPU逻辑核心数的场景中,推荐使用此策略;例如,CPU开启超线程的特性。
PhasedBackoffWaitStrategy
自旋 + yield + 自定义策略,CPU资源紧缺,吞吐量和延迟并不重要的场景。
写数据
单线程写数据的流程:
- 申请写入m个元素;
- 若是有m个元素可以入,则返回最大的序列号。这儿主要判断是否会覆盖未读的元素;
- 若是返回的正确,则生产者开始写入元素。

框架的使用
生产消费模型的应用
1、引入依赖
<dependencies><dependency><groupId>com.lmax</groupId><artifactId>disruptor</artifactId><version>3.2.1</version></dependency></dependencies>
2、定义Event
//定义事件event 通过Disruptor 进行交换的数据类型。public class LongEvent {private Long value;public Long getValue() {return value;}public void setValue(Long value) {this.value = value;}}
3、定义EventFactory
我们需要Disruptor为我们创建Event,所以这里我们需要定义事件工厂,实现框架定义的接口
public class LongEventFactory implements EventFactory<LongEvent> {public LongEvent newInstance() {return new LongEvent();}}
4、定义事件消费者
public class LongEventHandler implements EventHandler<LongEvent> {public void onEvent(LongEvent event, long sequence, boolean endOfBatch) throws Exception {System.out.println("消费者:"+event.getValue());}}
5、定义生产者
public class LongEventProducer {public final RingBuffer<LongEvent> ringBuffer;public LongEventProducer(RingBuffer<LongEvent> ringBuffer) {this.ringBuffer = ringBuffer;}public void onData(ByteBuffer byteBuffer) {// 1.ringBuffer 事件队列 下一个槽long sequence = ringBuffer.next();Long data = null;try {//2.取出空的事件队列LongEvent longEvent = ringBuffer.get(sequence);data = byteBuffer.getLong(0);//3.获取事件队列传递的数据longEvent.setValue(data);try {Thread.sleep(10);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();}} finally {System.out.println("生产这准备发送数据");//4.发布事件ringBuffer.publish(sequence);}}}
6、定义Main入口
public class DisruptorMain {public static void main(String[] args) {// 1.创建一个可缓存的线程 提供线程来出发Consumer 的事件处理ExecutorService executor = Executors.newCachedThreadPool();// 2.创建工厂EventFactory<LongEvent> eventFactory = new LongEventFactory();// 3.创建ringBuffer 大小int ringBufferSize = 1024 * 1024; // ringBufferSize大小一定要是2的N次方// 4.创建DisruptorDisruptor<LongEvent> disruptor = new Disruptor<LongEvent>(eventFactory, ringBufferSize, executor,ProducerType.SINGLE, new YieldingWaitStrategy());// 5.连接消费端方法disruptor.handleEventsWith(new LongEventHandler());// 6.启动disruptor.start();// 7.创建RingBuffer容器RingBuffer<LongEvent> ringBuffer = disruptor.getRingBuffer();// 8.创建生产者LongEventProducer producer = new LongEventProducer(ringBuffer);// 9.指定缓冲区大小ByteBuffer byteBuffer = ByteBuffer.allocate(8);for (int i = 1; i <= 100; i++) {byteBuffer.putLong(0, i);producer.onData(byteBuffer);}//10.关闭disruptor和executordisruptor.shutdown();executor.shutdown();}}
