深度强化学习炼丹炉
白天
夜间
首页
下载
阅读记录
书签管理
我的书签
添加书签
移除书签
📃分层强化学习综述
浏览
220
扫码
分享
2023-11-24 00:22:21
分层强化学习综述_周文吉.pdf
若有收获,就点个赞吧
0 人点赞
上一篇:
下一篇:
📝[COMA]Counterfactual Multi-Agent Policy Gradients
📝[BicNet]Multiagent Bidirectionally-Coordinated Nets: Emergence of Human-level Coordination in Learning to Play StarCraft Combat
📝[CommNet]Learning Multiagent Communication with Backpropagation
📝[MAPPO]The Surprising Effectiveness of PPO in Cooperative, Multi-Agent Games
📝[MADDPG]Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments
✏️多智能体强化学习中的值函数分解——VDN、QMIX、QTRAN
📃[QTRAN]QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning
📝[QMIX]QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
📝[VDN]Value-Decomposition Networks For Cooperative Multi-Agent Learning
📃[IQL]Multiagent Cooperation and Competition with Deep Reinforcement Learning
📝[SAC2]Soft Actor-Critic Algorithms and Applications
📝[SAC]Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
📝[PPO]Proximal Policy Optimization
📝Trust Region Policy Optimization
📝[A3C]Asynchronous Methods for Deep Reinforcement Learning
📝[TD3]Addressing Function Approximation Error in Actor-Critic Methods
📝[DDPG]CONTINUOUS CONTROL WITH DEEP REINFORCEMENT LEARNING
✏️从 Policy Gradient 到 Actor-Critic
📝[PG]Policy gradient methods for reinforcement learning with function approximation
📝[DuelingDQN]Dueling Network Architectures for Deep Reinforcement Learning
📃Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning
📝[PER_DQN]Prioritized Experience Replay
📝[DDQN]Deep Reinforcement Learning with Double Q-learning
📃分层强化学习综述
📃[DRQN]Deep Recurrent Q-Learning for Partially Observable MDPs
📝[DQN2]Human-level control through deep reinforcement learning
📝[DQN]Playing Atari with Deep Reinforcement Learning
暂无相关搜索结果!
让时间为你证明
分享,让知识传承更久远
×
文章二维码
×
手机扫一扫,轻松掌上读
文档下载
×
请下载您需要的格式的文档,随时随地,享受汲取知识的乐趣!
PDF
文档
EPUB
文档
MOBI
文档
书签列表
×
阅读记录
×
阅读进度:
0.00%
(
0/0
)
重置阅读进度
×
思维导图备注