请您勇敢地去翻译和改进翻译。虽然我们追求卓越,但我们并不要求您做到十全十美,因此请不要担心因为翻译上犯错——在大部分情况下,我们的服务器已经记录所有的翻译,因此您不必担心会因为您的失误遭到无法挽回的破坏。(改编自维基百科)
负责人:zyBourn:噼里啪啦嘣;QQ:379991171;微信:zybourn
可能有用的链接
章节列表
- Apache Flink Documentation
 - Dataflow Programming Model
 - Distributed Runtime Environment
 - DataStream API Tutorial
 - Local Setup Tutorial
 - Running Flink on Windows
 - Examples
 - Batch Examples
 - Project Template for Java
 - Project Template for Scala
 - Configuring Dependencies, Connectors, Libraries
 - Basic API Concepts
 - Scala API Extensions
 - Java Lambda Expressions
 - Flink DataStream API Programming Guide
 - Event Time
 - Generating Timestamps / Watermarks
 - Pre-defined Timestamp Extractors / Watermark Emitters
 - State & Fault Tolerance
 - Working with State
 - The Broadcast State Pattern
 - Checkpointing
 - Queryable State Beta
 - State Backends
 - State Schema Evolution
 - Custom Serialization for Managed State
 - Operators
 - Windows
 - Joining
 - Process Function (Low-level Operations)
 - Asynchronous I/O for External Data Access
 - Streaming Connectors
 - Fault Tolerance Guarantees of Data Sources and Sinks
 - Apache Kafka Connector
 - Apache Cassandra Connector
 - Amazon AWS Kinesis Streams Connector
 - Elasticsearch Connector
 - HDFS Connector
 - Streaming File Sink
 - RabbitMQ Connector
 - Apache NiFi Connector
 - Twitter Connector
 - Side Outputs
 - Python Programming Guide (Streaming) Beta
 - Testing
 - Experimental Features
 - Flink DataSet API Programming Guide
 - DataSet Transformations
 - Fault Tolerance
 - Iterations
 - Zipping Elements in a DataSet
 - Connectors
 - Python Programming Guide Beta
 - Hadoop Compatibility Beta
 - Local Execution
 - Cluster Execution
 - Table API & SQL
 - Concepts & Common API
 - Streaming Concepts
 - Dynamic Tables
 - Time Attributes
 - Joins in Continuous Queries
 - Temporal Tables
 - Detecting Patterns in Tables Beta
 - Query Configuration
 - Connect to External Systems
 - Table API
 - SQL
 - Built-In Functions
 - User-defined Sources & Sinks
 - User-defined Functions
 - SQL Client Beta
 - Data Types & Serialization
 - Register a custom serializer for your Flink program
 - Execution Configuration
 - Program Packaging and Distributed Execution
 - Parallel Execution
 - Execution Plans
 - Restart Strategies
 - FlinkCEP - Complex event processing for Flink
 - Storm Compatibility Beta
 - Gelly: Flink Graph API
 - Graph API
 - Iterative Graph Processing
 - Library Methods
 - Graph Algorithms
 - Graph Generators
 - Bipartite Graph
 - FlinkML - Machine Learning for Flink
 - Quickstart Guide
 - Alternating Least Squares
 - How to Contribute
 - Cross Validation
 - Distance Metrics
 - k-Nearest Neighbors Join
 - MinMax Scaler
 - Multiple Linear Regression
 - Looking under the hood of pipelines
 - Polynomial Features
 - Stochastic Outlier Selection
 - Standard Scaler
 - SVM using CoCoA
 - Best Practices
 - API Migration Guides
 - Standalone Cluster
 - YARN Setup
 - Mesos Setup
 - Docker Setup
 - Kubernetes Setup
 - Amazon Web Services (AWS)
 - Google Compute Engine Setup
 - MapR Setup
 - Hadoop Integration
 - JobManager High Availability (HA)
 - Checkpoints
 - Savepoints
 - State Backends
 - Tuning Checkpoints and Large State
 - Configuration
 - Production Readiness Checklist
 - Command-Line Interface
 - Scala REPL
 - Kerberos Authentication Setup and Configuration
 - SSL Setup
 - File Systems
 - Upgrading Applications and Flink Versions
 - Metrics
 - How to use logging
 - History Server
 - Monitoring Checkpointing
 - Monitoring Back Pressure
 - Monitoring REST API
 - Debugging Windows & Event Time
 - Debugging Classloading
 - Application Profiling
 - Importing Flink into an IDE
 - Building Flink from Source
 - Component Stack
 - Data Streaming Fault Tolerance
 - Jobs and Scheduling
 - Task Lifecycle
 - File Systems
 
流程
一、认领
首先查看整体进度,确认没有人认领了你想认领的章节。
然后回复 ISSUE,注明“章节 + QQ 号”(一定要留 QQ)。
二、翻译
可以合理利用翻译引擎(例如谷歌),但一定要把它变得可读!
如果遇到格式问题,请随手把它改正。
三、提交
注意:请提交到docs/1.7/,不要改动docs/1.7-SNAPSHOT/。
forkGithub 项目- 将译文放在
docs/1.7/文件夹下 pushpull request
请见 Github 入门指南。
