求向量元素的加和
向std::vector中添加元素最快的方法是哪种?为了得到答案,我准备向std::vector中填充了一亿个数值,这些数在1~10之间均匀分布) 。我们的任务是用各种方法计算这些数字的和,并添加执行时间作为性能指标。本节将讨论原子、锁、线程本地数据和任务。
单线程方式
最直接的方式是使用for循环进行数字的添加。
for循环
下面的代码中,第27行进行加和计算。
// calculateWithLoop.cpp#include <chrono>#include <iostream>#include <random>#include <vector>constexpr long long size = 100000000;int main() {std::cout << std::endl;std::vector<int>randValues;randValues.reserve(size);// random valuesstd::random_device seed;std::mt19937 engine(seed());std::uniform_int_distribution<> uniformDIst(1, 10);for (long long i = 0; i < size; ++i)randValues.push_back(uniformDIst(engine));const auto sta = std::chrono::steady_clock::now();unsigned long long sum = {};for (auto n : randValues)sum += n;const std::chrono::duration<double> dur =std::chrono::steady_clock::now() - sta;std::cout << "Time for mySumition " << dur.count()<< "seconds" << std::endl;std::cout << "Result: " << sum << std::endl;std::cout << std::endl;}
我的电脑可够快?

显式地使用循环没什么技术含量。大多数情况下,可以使用标准模板库中的算法。
使用std::accumulate进行加和计算
std::accumulate是计算向量和的正确选择,下面代码展示了std::accumulate的使用方法。完整的源文件可以在本书的参考资料中找到。
// calculateWithStd.cpp...const unsigned long long sum = std::accumulate(randValues.begin(),randValues.end(), 0);...
Linux上,std::accumulate的性能与for循环的性能大致相同,而在Windows上使用std::accumulate会产生很大的性能收益。

现在有了基线参考时间,就可以继续剩余的两个单线程场景了:使用锁和原子操作。为什么是这两个场景?我们需要有性能数字佐证,在没有竞争的情况下,锁和原子操作对数据进行保护,需要付出多大的性能代价。
使用锁进行保护
如果使用锁保护对求和变量的访问,需要回答两个问题。
- 无争抢的同步锁,需要多大的代价?
- 最优的情况下,锁能有多快?
这里使用std::lock_guard的方式,完整源码可在本书资源中找到。
// calculateWithLock.cpp...std::mutex myMutex;for (auto i: randValues){std::lock_guard<std::mutex> myLockGuard(myMutex);sum += i;}...
执行时间与预期的一样:对变量sum进行保护后,程序变得很慢。

std::lock_guard的方式大约比std::accumulate慢50-150倍。接下来,让我们来看看原子操作的表现。
使用原子操作进行保护
对于原子操作的问题与锁一样:
- 原子同步的代价有多大?
- 如果没有竞争,原子操作能有多快?
还有一个问题:原子操作和锁的性能有多大差异?
// calculateWithAtomic.cpp#include <atomic>#include <chrono>#include <iostream>#include <numeric>#include <random>#include <vector>constexpr long long size = 100000000;int main() {std::cout << std::endl;std::vector<int>randValues;randValues.reserve(size);// random valuesstd::random_device seed;std::mt19937 engine(seed());std::uniform_int_distribution<> uniformDist(1, 10);for (long long i = 0; i < size; ++i)randValues.push_back(uniformDist(engine));std::atomic<unsigned long long> sum = {};std::cout << std::boolalpha << "sum.is_lock_free(): "<< sum.is_lock_free() << std::endl;std::cout << std::endl;auto sta = std::chrono::steady_clock::now();for (auto i : randValues) sum += i;std::chrono::duration<double> dur = std::chrono::steady_clock::now() - sta;std::cout << "Time for addition " << dur.count()<< " seconds" << std::endl;std::cout << "Result: " << sum << std::endl;std::cout << std::endl;sum = 0;sta = std::chrono::steady_clock::now();for (auto i : randValues) sum.fetch_add(i);dur = std::chrono::steady_clock::now() - sta;std::cout << "Time for addition " << dur.count()<< " seconds" << std::endl;std::cout << "Result: " << sum << std::endl;std::cout << std::endl;}
首先,第28行检查是否有锁,否则锁和原子操作就没有区别了。所有主流平台上,原子变量都是无锁的。然后,用两种方法计算加和。第33行使用+=操作符,第45行使用fetch_add方法。单线程情况下,两种方式相差不多;不过,我可以显式地指定fetch_add的内存序。关于这点将在下一小节中详细介绍。
下面是程序的结果。


单线程场景总结
- 原子操作在Linux和Windows上的速度比
std::accumulate要慢12 - 50倍。 - 在Linux和Windows上,原子操作的速度比锁快2 - 3倍。
std::accumulate似乎在Windows上有更好的优化。
进行多线程场景测试之前,用表总结了单线程执行的结果,时间单位是秒。
| 操作系统(编译器) | for循环 | std::accumulate |
锁 | 原子操作 |
|---|---|---|---|---|
| Linux(GCC) | 0.07 | 0.07 | 3.34 | 1.34/1.33 |
| Windows(cl.exe) | 0.08 | 0.03 | 4.07 | 1.50/1.61 |
多线程:使用共享变量进行求和
使用四个线程并用共享变量进行求和,并不是最优的最优的方式,因为同步开销超过了性能收益。
还是那两个问题:
- 使用锁和原子的求和方式,在性能上有什么不同?
std::accumulate的单线程执行和多线程执行的性能表现有什么不同?
使用std::lock_guard
实现线程安全的求和,最简单方法是使用std::lock_guard。
// synchronisationWithLock.cpp#include<chrono>#include <iostream>#include <mutex>#include <random>#include <thread>#include <utility>#include <vector>constexpr long long size = 100000000;constexpr long long fir = 25000000;constexpr long long sec = 50000000;constexpr long long thi = 75000000;constexpr long long fou = 100000000;std::mutex myMutex;void sumUp(unsigned long long& sum, const std::vector<int>& val,unsigned long long beg, unsigned long long end) {for (auto it = beg; it < end; ++it) {std::lock_guard<std::mutex> myLock(myMutex);sum += val[it];}}int main() {std::cout << std::endl;std::vector<int> randValues;randValues.reserve(size);std::mt19937 engine;std::uniform_int_distribution<> uniformDist(1, 10);for (long long i = 0; i < size; ++i)randValues.push_back(uniformDist(engine));unsigned long long sum = 0;const auto sta = std::chrono::steady_clock::now();std::thread t1(sumUp, std::ref(sum), std::ref(randValues), 0, fir);std::thread t2(sumUp, std::ref(sum), std::ref(randValues), fir, sec);std::thread t3(sumUp, std::ref(sum), std::ref(randValues), sec, thi);std::thread t4(sumUp, std::ref(sum), std::ref(randValues), thi, fou);t1.join();t2.join();t3.join();t4.join();std::chrono::duration<double> dur = std::chrono::steady_clock::now() - sta;std::cout << "Time for addition " << dur.count()<< " seconds" << std::endl;std::cout << "Result: " << sum << std::endl;std::cout << std::endl;}
程序很简单,函数sumUp(第20 - 26行)是需要线程完成的工作包。通过引用的方式得到变量sum和std::vector val,beg和end用来限定求和的范围,std::lock_guard(第23行)用于保护共享变量sum。每个线程(第43 - 46行)对四分之一的数据进行加和计算。
下面是我电脑上的性能数据:


因为std::lock_guard需要对行了同步,所以瓶颈在共享变量sum处。简单直接的解决方案:用轻量级的原子操作来替换重量级的锁。
没有更改,为了简单起见,本小节之后只展示
sumUp函数体。完整的示例,请参阅本书的参考资料。
使用原子变量
求和变量sum是一个原子变量,就不再需要std::lock_guard。以下是修改后的求和函数。
// synchronisationWithAtomic.cpp...void sumUp(std::atomic<unsigned long long>& sum, const std::vector<int>& val,unsigned long long beg, unsigned long long end){for (auto it = beg; it < end; ++it){sum += val[it];}}
我的Windows笔记本电脑的性能数据相当奇怪,耗时是使用std::lock_guard的两倍多。

除了使用+=操作符外,还可以使用fetch_add。
使用fetch_add
这次,代码的修改的更少,只是将求和表达式改为sum.fetch_add(val[it])。
// synchronisationWithFetchAdd.cpp...void sumUp(std::atomic<unsigned long long>& sum, const std::vector<int>& val,unsigned long long beg, unsigned long long end){for (auto it = beg; it < end; ++it){sum.fetch_add(val[it]);}}...
现在的性能与前面的例子相似,操作符+=和fetch_add之间貌似没有什么区别。

虽然+=操作和fetch_add在性能上没有区别,但是fetch_add有一个优势,可以显式地弱化内存序,并使用自由语义。
使用自由语义的fetch_add
// synchronisationWithFetchAddRelaxed.cpp...void sumUp(std::atomic<unsigned long long>& sum, const std::vector<int>& val,unsigned long long beg, unsigned long long end){for (auto it = beg; it < end; ++it){sum.fetch_add(val[it], std::memory_order_relaxed);}}...
原子变量默认是顺序一致的。对于原子变量的加和和赋值,使用fetch_add是没问题的,也可以进行优化。我将求和表达式中的内存序调整为自由语义:sum.fetch_add (val[it],std::memory_order_relaxed)。自由语义是最弱的内存序,也是我们优化的终点。
这个用例中,自由语义能很好的完成工作,因为fetch_add进行的每个加和都是原子的,并且线程会进行同步。
因为是最弱的内存模型,所以性能最好。

多线程使用共享变量求和总结
性能数值的时间单位是秒。
| 操作系统(编译器) | std::lock_guard |
原子 += | fetch_add | fetch_add (使用自由内存序) |
|---|---|---|---|---|
| Linux(GCC) | 20.81 | 7.78 | 7.87 | 7.66 |
| Windows(cl.exe) | 6.22 | 15.73 | 15.78 | 15.01 |
性能数据并不乐观,使用自由语义的共享原子变量,在四个线程的帮助下计算加和,其速度大约比使用std::accumulate算法的单个线程慢100倍。
结合前面的两种加和的策略,接下来会使用四个线程,并尽量减少线程之间的同步。
线程本地的加和
接下来使用局部变量、线程本地数据和任务,可以最小化同步。
使用本地变量
每个线程都使用本地变量求和,所以可以在不同步的情况下完成自己的工作。不过,汇总局部变量的总和时需要进行同步。简单地说:只添加了4个同步,所以从性能的角度来看,使用哪种同步并不重要。我使用std::lock_guard和一个具有顺序一致语义和自由语义的原子变量。
std::lock_guard
使用std::lock_guard进行最小化同步的加和计算。
// localVariable.cpp#include <mutex>#include<chrono>#include <iostream>#include <random>#include <thread>#include <utility>#include <vector>constexpr long long size = 100000000;constexpr long long fir = 25000000;constexpr long long sec = 50000000;constexpr long long thi = 75000000;constexpr long long fou = 100000000;std::mutex myMutex;void sumUp(unsigned long long& sum, const std::vector<int>& val,unsigned long long beg, unsigned long long end) {unsigned long long tmpSum{};for (auto i = beg; i < end; ++i) {tmpSum += val[i];}std::lock_guard<std::mutex> lockGuard(myMutex);sum += tmpSum;}int main() {std::cout << std::endl;std::vector<int> randValues;randValues.reserve(size);std::mt19937 engine;std::uniform_int_distribution<> uniformDist(1, 10);for (long long i = 0; i < size; ++i)randValues.push_back(uniformDist(engine));unsigned long long sum{};const auto sta = std::chrono::steady_clock::now();std::thread t1(sumUp, std::ref(sum), std::ref(randValues), 0, fir);std::thread t2(sumUp, std::ref(sum), std::ref(randValues), fir, sec);std::thread t3(sumUp, std::ref(sum), std::ref(randValues), sec, thi);std::thread t4(sumUp, std::ref(sum), std::ref(randValues), thi, fou);t1.join();t2.join();t3.join();t4.join();std::chrono::duration<double> dur =std::chrono::steady_clock::now() - sta;std::cout << "Time for addition " << dur.count()<< " seconds" << std::endl;std::cout << "Result: " << sum << std::endl;std::cout << std::endl;}
第26和27行,将局部求和结果tmpSum添加到全局求和变量sum中。


接下来使用局部变量的示例中,只有函数求和方式发生了变化,所以只展示这个函数体实现。完整的程序代码,请参考源文件。
使用顺序一致语义的原子变量
让我们用一个原子变量来声明全局求和变量sum。
// localVariableAtomic.cpp...void sumUp(std::atomic<unsigned long long>& sum, const std::vector<int>& val,unsigned long long beg, unsigned long long end){unsigned int long long tmpSum{};for (auto i = beg; i < end; ++i){tmpSum += val[i];}sum+= tmpSum;}...
下面是具体的性能数据:


使用自由语义的原子变量
现在不使用默认的内存序,而使用的是自由语义。只需要保证,所有求和操作是原子的就好。
// localVariableAtomicRelaxed.cpp...void sumUp(std::atomic<unsigned long long>& sum, const std::vector<int>& val,unsigned long long beg, unsigned long long end){unsigned int long long tmpSum{};for (auto i = beg; i < end; ++i){tmpSum += val[i];}sum.fetch_add(tmpSum, std::memory_order_relaxed);}...
和预期一样,使用std::lock_guard,使用顺序一致的原子变量,或是使用自由语义的原子变量进行求和,在性能方面并没什么差异。


线程本地数据不同于其他类型的数据,它的生命周期与线程绑定,并非函数的生命周期,例如:本例中的变量tmpSum。
使用线程本地数据
线程本地数据属于创建它的线程,其只在需要时被创建,非常适合于本地求和。
// threadLocalSummation.cpp#include <atomic>#include<chrono>#include <iostream>#include <random>#include <thread>#include <utility>#include <vector>constexpr long long size = 100000000;constexpr long long fir = 25000000;constexpr long long sec = 50000000;constexpr long long thi = 75000000;constexpr long long fou = 100000000;thread_local unsigned long long tmpSum = 0;void sumUp(std::atomic<unsigned long long>& sum, const std::vector<int>& val,unsigned long long beg, unsigned long long end) {for (auto i = beg; i < end; ++i) {tmpSum += val[i];}sum.fetch_add(tmpSum, std::memory_order_relaxed);}int main() {std::cout << std::endl;std::vector<int> randValues;randValues.reserve(size);std::mt19937 engine;std::uniform_int_distribution<> uniformDist(1, 10);for (long long i = 0; i < size; ++i)randValues.push_back(uniformDist(engine));std::atomic<unsigned long long> sum{};const auto sta = std::chrono::steady_clock::now();std::thread t1(sumUp, std::ref(sum), std::ref(randValues), 0, fir);std::thread t2(sumUp, std::ref(sum), std::ref(randValues), fir, sec);std::thread t3(sumUp, std::ref(sum), std::ref(randValues), sec, thi);std::thread t4(sumUp, std::ref(sum), std::ref(randValues), thi, fou);t1.join();t2.join();t3.join();t4.join();std::chrono::duration<double> dur =std::chrono::steady_clock::now() - sta;std::cout << "Time for addition " << dur.count()<< " seconds" << std::endl;std::cout << "Result: " << sum << std::endl;std::cout << std::endl;}
第18行中声明了线程本地变量tmpSum,并在第23和25行中使用它进行加和。
下面是使用本地变量加和的性能数据:

最后,来看下如何使用任务(task)完成这项工作。
使用任务
使用任务,我们可以使用隐式同步完成整个工作。每个部分求和在单独的线程中执行,最后在主线程中进行求和。
代码如下:
// tasksSummation.cpp#include<chrono>#include <future>#include <iostream>#include <random>#include <thread>#include <utility>#include <vector>constexpr long long size = 100000000;constexpr long long fir = 25000000;constexpr long long sec = 50000000;constexpr long long thi = 75000000;constexpr long long fou = 100000000;void sumUp(std::promise<unsigned long long>&& prom, const std::vector<int>& val,unsigned long long beg, unsigned long long end) {unsigned long long sum = {};for (auto i = beg; i < end; ++i) {sum += val[i];}prom.set_value(sum);}int main() {std::cout << std::endl;std::vector<int> randValues;randValues.reserve(size);std::mt19937 engine;std::uniform_int_distribution<> uniformDist(1, 10);for (long long i = 0; i < size; ++i)randValues.push_back(uniformDist(engine));std::promise<unsigned long long> prom1;std::promise<unsigned long long> prom2;std::promise<unsigned long long> prom3;std::promise<unsigned long long> prom4;auto fut1 = prom1.get_future();auto fut2 = prom2.get_future();auto fut3 = prom3.get_future();auto fut4 = prom4.get_future();const auto sta = std::chrono::steady_clock::now();std::thread t1(sumUp, std::move(prom1), std::ref(randValues), 0, fir);std::thread t2(sumUp, std::move(prom2), std::ref(randValues), fir, sec);std::thread t3(sumUp, std::move(prom3), std::ref(randValues), sec, thi);std::thread t4(sumUp, std::move(prom4), std::ref(randValues), thi, fou);auto sum = fut1.get() + fut2.get() + fut3.get() + fut4.get();std::chrono::duration<double> dur = std::chrono::steady_clock::now() - sta;std::cout << "Time for addition " << dur.count()<< " seconds" << std::endl;std::cout << "Result: " << sum << std::endl;t1.join();t2.join();t3.join();t4.join();std::cout << std::endl;}
第39 - 47行定义了四个promise和future。第51 - 54行中,每个promise都被移动到线程中。promise只能移动,不能复制。sumUp的第一个参数使用右值引用的promise。future在第56行使用阻塞的get获取求和结果。

所有线程本地求和场景的总结
无论是使用局部变量,任务来部分求和,还是各种同步原语(如原子),性能上好像没有太大的区别,只有线程本地数据似乎让程序变慢了一些。这个观察结果适用于Linux和Windows,不要对Linux相对于Windows的更高性能感到惊讶。别忘了,Linux的电脑上有4个核,而Windows笔记本电脑只有2个核。
| 操作系统(编译器) | std::lock_guard |
使用顺序一致语义的原子变量 | 使用自由语义的原子变量 | 线程本地数据 | 任务 |
|---|---|---|---|---|---|
| Linux(GCC) | 0.03 | 0.03 | 0.03 | 0.04 | 0.03 |
| Windows(cl.exe) | 0.10 | 0.10 | 0.10 | 0.20 | 0.10 |
多线程的本地求和的速度,大约是单线程求和的两倍。因为线程之间几乎不需要同步,所以在最优的情况下,我认为性能会提高四倍。背后的根本原因是什么?
总结:求向量元素的加和
单线程
基于for循环和STL算法std::accumulate的性能差不多。优化版本中,编译器会使用向量化的SIMD指令(SSE或AVX)用于求和。因此,循环计数器增加了4(SSE)或8(AVX)。
使用共享变量多线程求和
使用共享变量作为求和变量,可以说明了一点:同步操作是代价是非常昂贵的,应该尽可能避免。虽然我使用了原子变量,甚至打破了顺序一致性,但这四个线程比一个线程还要慢100倍。从性能角度考虑,要尽可能减少同步。
线程本地求和
线程本地求和仅比单线程for循环或std::accumulate快两倍,即使四个线程都可以独立工作,这种情况仍然存在。这也让我很惊讶,因为我原以为会有四倍的性能提升。更让我惊讶的是,电脑的四个核心并没有充分利用。

没有充分利用的原因也很简单,CPU无法快速地从内存中获取数据。程序执行是有内存限制的,或者说内存延迟了CPU核的计算速度。下图展示了计算时的瓶颈内存。

Roofline模型是一种直观的性能模型,可对运行在多核或多核体系结构上的应用程序进行性能评估。该模型依赖于体系结构的峰值性能、峰值带宽和计算密度。
