Question:
A 3 x 3 magic square is a 3 x 3 grid filled with distinct numbers from 1 to 9 such that each row, column, and both diagonals all have the same sum.
Given an grid of integers, how many 3 x 3 “magic square” subgrids are there? (Each subgrid is contiguous).
Example:
Input: [[4,3,8,4],[9,5,1,9],[2,7,6,2]]Output: 1Explanation:The following subgrid is a 3 x 3 magic square:438951276while this one is not:384519762In total, there is only one magic square inside the given grid.
Solution:
/*** @param {number[][]} grid* @return {number}*/var numMagicSquaresInside = function(grid) {if (!grid || grid.length < 3 || grid[0].length < 3) return 0;let row = grid.length;let col = grid[0].length;let count = 0;for (let r = 1; r < row - 1; r++) {for (let c = 1; c < col - 1; c++) {if (grid[r][c] === 5) {if (!validSurroundNum(grid,r,c)) continue;if (grid[r-1][c-1] + grid[r+1][c+1] !== 10) continue; // left top, right bottom = 10if (grid[r+1][c-1] + grid[r-1][c+1] !== 10) continue; // left bottom, right top =10if (grid[r-1][c-1] + grid[r-1][c] + grid[r-1][c+1] !== 15) continue; // top row = 15if (grid[r+1][c-1] + grid[r+1][c] + grid[r+1][c+1] !== 15) continue; // bottom row = 15if (grid[r-1][c-1] + grid[r][c-1] + grid[r+1][c-1] !== 15) continue; // left col = 15if (grid[r-1][c+1] + grid[r][c+1] + grid[r+1][c+1] !== 15) continue; // right col = 15count += 1;}}}return count;};function validSurroundNum(grid, x,y) {let set = new Set();for (let i = -1; i < 1; i++) {for (let j = -1; j < 1; j++) {if (set.has(grid[x+i][y+j]) || grid[x+i][y+j] < 1 || grid[x+i][y+j] > 9) {return false;} else {set.add(grid[x+i][y+j]);}}}return true;}
Runtime: 52 ms, faster than 100.00% of JavaScript online submissions for Magic Squares In Grid.
