代码来自:https://www.geeksforgeeks.org/subset-sum-problem-dp-25/
应重点记忆上面链接中第二种动态规划的方法,因为第一种方法是指数复杂度。这里只记录动态规划的算法。
/*We can solve the problem in Pseudo-polynomial time using Dynamic programming.We create a boolean 2D table subset[][] and fill it in bottom up manner.The value of subset[i][j] will be true if there is a subset of set[0..j-1] with sum equal to i.,otherwise false. Finally, we return subset[sum][n]*/// Returns true if there is a subset of// set[] with sun equal to given sumstatic boolean isSubsetSum(int set[],int n, int sum){// The value of subset[i][j] will be// true if there is a subset of// set[0..j-1] with sum equal to iboolean subset[][] =new boolean[sum+1][n+1];// If sum is 0, then answer is truefor (int i = 0; i <= n; i++)subset[0][i] = true;// If sum is not 0 and set is empty,// then answer is falsefor (int i = 1; i <= sum; i++)subset[i][0] = false;// Fill the subset table in botton// up mannerfor (int i = 1; i <= sum; i++){for (int j = 1; j <= n; j++){subset[i][j] = subset[i][j-1];if (i >= set[j-1])subset[i][j] = subset[i][j] ||subset[i - set[j-1]][j-1];}}/* // uncomment this code to print tablefor (int i = 0; i <= sum; i++){for (int j = 0; j <= n; j++)System.out.println (subset[i][j]);} */return subset[sum][n];}
