Table API 是流处理和批处理通用的关系型 API,Table API 可以基于流输入或者 批输入来运行而不需要进行任何修改。Table API 是 SQL 语言的超集并专门为 Apache Flink 设计的,Table API 是 Scala 和 Java 语言集成式的 API。与常规 SQL 语言中将 查询指定为字符串不同,Table API 查询是以 Java 或 Scala 中的语言嵌入样式来定义 的,具有 IDE 支持如:自动完成和语法检测。
10.1 需要引入的 pom 依赖
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table_2.11</artifactId>
<version>1.7.2</version>
</dependency>
10.2 简单了解 TableAPI
def main(args: Array[String]): Unit = {
val env: StreamExecutionEnvironment =
StreamExecutionEnvironment.getExecutionEnvironment
val myKafkaConsumer: FlinkKafkaConsumer011[String] = MyKafkaUtil.getConsumer("ECOMMERCE")
val dstream: DataStream[String] = env.addSource(myKafkaConsumer)
val tableEnv: StreamTableEnvironment = TableEnvironment.getTableEnvironment(env)
val ecommerceLogDstream: DataStream[EcommerceLog] = dstream.map{
jsonString => JSON.parseObject(jsonString,classOf[EcommerceLog])
}
val ecommerceLogTable: Table = tableEnv.fromDataStream(ecommerceLogDstream)
val table: Table = ecommerceLogTable.select("mid,ch").filter("ch='appstore'")
val midchDataStream: DataStream[(String, String)] =
table.toAppendStream[(String,String)]
midchDataStream.print()
env.execute()
}
10.2.1 动态表
如果流中的数据类型是 case class 可以直接根据 case class 的结构生成 table
tableEnv.fromDataStream(ecommerceLogDstream)
或者根据字段顺序单独命名
tableEnv.fromDataStream(ecommerceLogDstream,’mid,’uid .......)
最后的动态表可以转换为流进行输出
table.toAppendStream[(String,String)]
10.2.2 字段
用一个单引放到字段前面来标识字段名, 如 ‘name , ‘mid ,’amount 等
10.3 TableAPI 的窗口聚合操作
10.3.1 通过一个例子了解 TableAPI
//每 10 秒中渠道为 appstore 的个数
def main(args: Array[String]): Unit = {
//sparkcontext
val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
//时间特性改为 eventTime env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
val myKafkaConsumer: FlinkKafkaConsumer011[String] = MyKafkaUtil.getConsumer("ECOMMERCE")
val dstream: DataStream[String] = env.addSource(myKafkaConsumer)
val ecommerceLogDstream: DataStream[EcommerceLog] =
dstream.map{
jsonString =>JSON.parseObject(jsonString,classOf[EcommerceLog])
}
//告知 watermark 和 eventTime 如何取
val ecommerceLogWithEventTimeDStream: DataStream[EcommerceLog] =
ecommerceLogDstream.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor[EcommerceLog](Time.seconds(0L)) {
override def extractTimestamp(element: EcommerceLog): Long = {
element.ts
}
}).setParallelism(1)
val tableEnv: StreamTableEnvironment =
TableEnvironment.getTableEnvironment(env)
//把数据流转化成 Table
val ecommerceTable: Table = tableEnv.fromDataStream(ecommerceLogWithEventTimeDStream ,
'mid,'uid,'appid,'area,'os,'ch,'logType,'vs,
'logDate,'logHour,'logHourMinut e,'ts.rowtime)
//通过 table api 进行操作
// 每 10 秒 统计一次各个渠道的个数 table api 解决
//1 groupby 2 要用 window 3 用 eventtime 来确定开窗时间
val resultTable: Table =
ecommerceTable.window(Tumble over 10000.millis on 'ts as 'tt).groupBy('ch,'tt ).select( 'ch, 'ch.count)
//把 Table 转化成数据流
val resultDstream: DataStream[(Boolean, (String, Long))] =
resultSQLTable.toRetractStream[(String,Long)]
resultDstream.filter(_._1).print()
env.execute()
}
10.3.2 关于 group by
- 如果了使用 groupby,table 转换为流的时候只能用 toRetractDstream
val rDstream: DataStream[(Boolean, (String, Long))] = table
.toRetractStream[(String,Long)]
- toRetractDstream 得到的第一个 boolean 型字段标识 true 就是最新的数据(Insert),false 表示过期老数据(Delete)
val rDstream: DataStream[(Boolean, (String, Long))] = table
.toRetractStream[(String,Long)]
rDstream.filter(_._1).print()
- 如果使用的 api 包括时间窗口,那么窗口的字段必须出现在 groupBy 中。
val table: Table = ecommerceLogTable
.filter("ch ='appstore'")
.window(Tumble over 10000.millis on 'ts as 'tt) .groupBy('ch ,'tt)
.select("ch,ch.count ")
10.3.3 关于时间窗口
- 用到时间窗口,必须前声明时间字段,如果是 processTime 直接在创建动态表时进行追加就可以。
val ecommerceLogTable: Table = tableEnv
.fromDataStream( ecommerceLogWithEtDstream,
'mid,'uid,'appid,'area,'os,'ch,'logType,'vs,'logDate,'logHour,'lo gHourMinute,'ps.proctime)
- 如果是 EventTime 要在创建动态表时声明
val ecommerceLogTable: Table = tableEnv
.fromDataStream(ecommerceLogWithEtDstream,
'mid,'uid,'appid,'area,'os,'ch,'logType,'vs,'logDate,'logHour,'lo gHourMinute,'ts.rowtime)
- 滚动窗口可以使用 Tumble over 10000.millis on 来表示
val table: Table = ecommerceLogTable.filter("ch ='appstore'")
.window(Tumble over 10000.millis on 'ts as 'tt)
.groupBy('ch ,'tt)
.select("ch,ch.count ")
10.4 SQL 如何编写
def main(args: Array[String]): Unit = {
//sparkcontext
val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
//时间特性改为 eventTime env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
val myKafkaConsumer: FlinkKafkaConsumer011[String] = MyKafkaUtil.getConsumer("ECOMMERCE")
val dstream: DataStream[String] = env.addSource(myKafkaConsumer)
val ecommerceLogDstream: DataStream[EcommerceLog] = dstream.map{ jsonString =>JSON.parseObject(jsonString,classOf[EcommerceLog]) }
//告知 watermark 和 eventTime 如何取
val ecommerceLogWithEventTimeDStream: DataStream[EcommerceLog] =
ecommerceLogDstream.assignTimestampsAndWatermarks(
new BoundedOutOfOrdernessTimestampExtractor[EcommerceLog](Time.seconds(0L)) {
override def extractTimestamp(element: EcommerceLog): Long = { element.ts
}
}).setParallelism(1)
//SparkSession
val tableEnv: StreamTableEnvironment = TableEnvironment.getTableEnvironment(env)
//把数据流转化成 Table
val ecommerceTable: Table =
tableEnv.fromDataStream(ecommerceLogWithEventTimeDStream ,
'mid,'uid,'appid,'area,'os,'ch,'logType,'vs,
'logDate,'logHour,'logHourMinu te,'ts.rowtime)
//通过 table api 进行操作
// 每 10 秒 统计一次各个渠道的个数 table api 解决
//1 groupby 2 要用 window 3 用 eventtime 来确定开窗时间
val resultTable: Table = ecommerceTable.window(Tumble over 10000.millis on 'ts as 'tt).groupBy('ch,'tt ).select( 'ch, 'ch.count)
// 通过 sql 进行操作
val resultSQLTable : Table = tableEnv.sqlQuery( "select ch ,count(ch) from"
+ecommerceTable
+" group by ch ,Tumble(ts,interval '10' SECOND )")
//把 Table 转化成数据流
//val appstoreDStream: DataStream[(String, String, Long)] =
appstoreTable.toAppendStream[(String,String,Long)]
val resultDstream: DataStream[(Boolean, (String, Long))] =
resultSQLTable.toRetractStream[(String,Long)]
resultDstream.filter(_._1).print()
env.execute()
}