CACHE的意义

为什么需要CPU cache?因为CPU的频率太快了,快到主存跟不上,这样在处理器时钟周期内,CPU常常需要等待主存,浪费资源。所以cache的出现,是为了缓解CPU和内存之间速度的不匹配问题(结构:cpu -> cache -> memory)。
CPU cache有什么意义?cache的容量远远小于主存,因此出现cache miss在所难免,既然cache不能包含CPU所需要的所有数据,那么cache的存在真的有意义吗?当然是有意义的——局部性原理。
A. 时间局部性:如果某个数据被访问,那么在不久的将来它很可能被再次访问;
B. 空间局部性:如果某个数据被访问,那么与它相邻的数据很快也可能被访问;

CPU cache结构

  1. 单核CPU cache结构

image.png
在单核CPU结构中,为了缓解CPU指令流水中cycle冲突,L1分成了指令(L1P)和数据(L1D)两部分,而L2则是指令和数据共存

  1. 多核CPU cache结构

image.png
多核CPU的结构与单核相似,但是多了所有CPU共享的L3三级缓存。在多核CPU的结构中,L1和L2是CPU私有的,L3则是所有CPU核心共享的

MESI(缓存一致性)

缓存一致性:在多核CPU中,内存中的数据会在多个核心中存在数据副本,某一个核心发生修改操作,就产生了数据不一致的问题。而一致性协议正是用于保证多个CPU cache之间缓存共享数据的一致。
至于MESI,则是缓存一致性协议中的一个,到底怎么实现,还是得看具体的处理器指令集。

cache的写方式

cache的写操作方式可以追溯到大学教程《计算机组成原理》一书。
A. write through(写通):每次CPU修改了cache中的内容,立即更新到内存,也就意味着每次CPU写共享数据,都会导致总线事务,因此这种方式常常会引起总线事务的竞争,高一致性,但是效率非常低;
B. write back(写回):每次CPU修改了cache中的数据,不会立即更新到内存,而是等到cache line在某一个必须或合适的时机才会更新到内存中;
无论是写通还是写回,在多线程环境下都需要处理缓存cache一致性问题。为了保证缓存一致性,处理器又提供了写失效(write invalidate)和写更新(write update)两个操作来保证cache一致性。

  • 写失效:当一个CPU修改了数据,如果其他CPU有该数据,则通知其为无效;
  • 写更新:当一个CPU修改了数据,如果其他CPU有该数据,则通知其跟新数据;

    写更新会导致大量的更新操作,因此在MESI协议中,采取的是写失效(即MESI中的I:ivalid,如果采用的是写更新,那么就不是MESI协议了,而是MESU协议)。

    cache line

    image.png
    cache line是cache与内存数据交换的最小单位,根据操作系统一般是32byte或64byte。在MESI协议中,状态可以是M、E、S、I,地址则是cache line中映射的内存地址,数据则是从内存中读取的数据。
    工作方式:当CPU从cache中读取数据的时候,会比较地址是否相同,如果相同则检查cache line的状态,再决定该数据是否有效,无效则从主存中获取数据,或者根据一致性协议发生一次cache-to—chache的数据推送(参见MESI协议,文章最后的链接);
    工作效率:当CPU能够从cache中拿到有效数据的时候,消耗几个CPU cycle,如果发生cache miss,则会消耗几十上百个CPU cycle;
    cache的工作原理以及在主板上的结构如下两图所示:
    image.png

    状态介绍

    MESI协议将cache line的状态分成modify、exclusive、shared、invalid,分别是修改、独占、共享和失效。

  • modify:当前CPU cache拥有最新数据(最新的cache line),其他CPU拥有失效数据(cache line的状态是invalid),虽然当前CPU中的数据和主存是不一致的,但是以当前CPU的数据为准;

  • exclusive:只有当前CPU中有数据,其他CPU中没有改数据,当前CPU的数据和主存中的数据是一致的;
  • shared:当前CPU和其他CPU中都有共同数据,并且和主存中的数据一致;
  • invalid:当前CPU中的数据失效,数据应该从主存中获取,其他CPU中可能有数据也可能无数据,当前CPU中的数据和主存被认为是不一致的;

对于invalid而言,在MESI协议中采取的是写失效(write invalidate)。

cache操作

MESI协议中,每个cache的控制器不仅知道自己的操作(local read和local write),每个核心的缓存控制器通过监听也知道其他CPU中cache的操作(remote read和remote write),今儿再确定自己cache中共享数据的状态是否需要调整。

  • local read(LR):读本地cache中的数据;
  • local write(LW):将数据写到本地cache;
  • remote read(RR):其他核心发生read;
  • remote write(RW):其他核心发生write;

    状态转换和cache操作

    如上文内容所述,MESI协议中cache line数据状态有4种,引起数据状态转换的CPU cache操作也有4种,因此要理解MESI协议,就要将这16种状态转换的情况讨论清楚。
    初始场景:在最初的时候,所有CPU中都没有数据,某一个CPU发生读操作,此时必然发生cache miss,数据从主存中读取到当前CPU的cache,状态为E(独占,只有当前CPU有数据,且和主存一致),此时如果有其他CPU也读取数据,则状态修改为S(共享,多个CPU之间拥有相同数据,并且和主存保持一致),如果其中某一个CPU发生数据修改,那么该CPU中数据状态修改为M(拥有最新数据,和主存不一致,但是以当前CPU中的为准),其他拥有该数据的核心通过缓存控制器监听到remote write行文,然后将自己拥有的数据的cache line状态修改为I(失效,和主存中的数据被认为不一致,数据不可用应该重新获取)。

    modify

    场景:当前CPU中数据的状态是modify,表示当前CPU中拥有最新数据,虽然主存中的数据和当前CPU中的数据不一致,但是以当前CPU中的数据为准;
    LR:此时如果发生local read,即当前CPU读数据,直接从cache中获取数据,拥有最新数据,因此状态不变;
    LW:直接修改本地cache数据,修改后也是当前CPU拥有最新数据,因此状态不变;
    RR:因为本地内存中有最新数据,当本地cache控制器监听到总线上有RR发生的时,必然是其他CPU发生了读主存的操作,此时为了保证一致性,当前CPU应该将数据写回主存,而随后的RR将会使得其他CPU和当前CPU拥有共同的数据,因此状态修改为S;
    RW:同RR,当cache控制器监听到总线发生RW,当前CPU会将数据写回主存,因为随后的RW将会导致主存的数据修改,因此状态修改成I;

    exclusive

    场景:当前CPU中的数据状态是exclusive,表示当前CPU独占数据(其他CPU没有数据),并且和主存的数据一致;
    LR:从本地cache中直接获取数据,状态不变;
    LW:修改本地cache中的数据,状态修改成M(因为其他CPU中并没有该数据,因此不存在共享问题,不需要通知其他CPU修改cache line的状态为I);
    RR:本地cache中有最新数据,当cache控制器监听到总线上发生RR的时候,必然是其他CPU发生了读取主存的操作,而RR操作不会导致数据修改,因此两个CPU中的数据和主存中的数据一致,此时cache line状态修改为S;
    RW:同RR,当cache控制器监听到总线发生RW,发生其他CPU将最新数据写回到主存,此时为了保证缓存一致性,当前CPU的数据状态修改为I;

    shared

    场景:当前CPU中的数据状态是shared,表示当前CPU和其他CPU共享数据,且数据在多个CPU之间一致、多个CPU之间的数据和主存一致;
    LR:直接从cache中读取数据,状态不变;
    LW:发生本地写,并不会将数据立即写回主存,而是在稍后的一个时间再写回主存,因此为了保证缓存一致性,当前CPU的cache line状态修改为M,并通知其他拥有该数据的CPU该数据失效,其他CPU将cache line状态修改为I;
    RR:状态不变,因为多个CPU中的数据和主存一致;
    RW:当监听到总线发生了RW,意味着其他CPU发生了写主存操作,此时本地cache中的数据既不是最新数据,和主存也不再一致,因此当前CPU的cache line状态修改为I;

    invalid

    场景:当前CPU中的数据状态是invalid,表示当前CPU中是脏数据,不可用,其他CPU可能有数据、也可能没有数据;
    LR:因为当前CPU的cache line数据不可用,因此会发生读内存,此时的情形如下。
    A. 如果其他CPU中无数据则状态修改为E;
    B. 如果其他CPU中有数据且状态为S或E则状态修改为S;
    C. 如果其他CPU中有数据且状态为M,那么其他CPU首先发生RW将M状态的数据写回主存并修改状态为S,随后当前CPU读取主存数据,也将状态修改为S;
    LW:因为当前CPU的cache line数据无效,因此发生LW会直接操作本地cache,此时的情形如下。
    A. 如果其他CPU中无数据,则将本地cache line的状态修改为M;
    B. 如果其他CPU中有数据且状态为S或E,则修改本地cache,通知其他CPU将数据修改为I,当前CPU中的cache line状态修改为M;
    C. 如果其他CPU中有数据且状态为M,则其他CPU首先将数据写回主存,并将状态修改为I,当前CPU中的cache line转台修改为M;
    RR:监听到总线发生RR操作,表示有其他CPU读取内存,和本地cache无关,状态不变;
    RW:监听到总线发生RW操作,表示有其他CPU写主存,和本地cache无关,状态不变;

    总结

    MESI协议为了保证多个CPU cache中共享数据的一致性,定义了cache line的四种状态,而CPU对cache的4种操作可能会产生不一致状态,因此cache控制器监听到本地操作和远程操作的时候,需要对地址一致的cache line状态做出一定的修改,从而保证数据在多个cache之间流转的一致性。

CPU在访问内存时,首先判断所要访问的内容是否在Cache中,如果在,就称为“命中(hit)”,此时CPU直接从Cache中调用该内容;否则,就 称为“ 不命中”,CPU只好去内存中调用所需的子程序或指令了。CPU不但可以直接从Cache中读出内容,也可以直接往其中写入内容。由于Cache的存取速 率相当快,使得CPU的利用率大大提高,进而使整个系统的性能得以提升。
Cache的一致性就是直Cache中的数据,与对应的内存中的数据是一致的。

DMA是直接操作总线地址的,这里先当作物理地址来看待吧(系统总线地址和物理地址只是观察内存的角度不同)。如果cache缓存的内存区域不包括DMA分配到的区域,那么就没有一致性的问题。但是如果cache缓存包括了DMA目的地址的话,会出现什么什么问题呢?
问题出在,经过DMA操作,cache缓存对应的内存数据已经被修改了,而CPU本身不知道(DMA传输是不通过CPU的),它仍然认为cache中的数 据就是内存中的数据,以后访问Cache映射的内存时,它仍然使用旧的Cache数据。这样就发生Cache与内存的数据“不一致性”错误。

以前接触比较多的几种内存机制:
带CACHE的内存有两种,写回(writeback)、写穿(writethrough);或者非CACHE空间。
搞DMA的时候发现非CACHE其实还可以细分两种,一致(coherent),写缓存(writecombine)。
其实后面这两种,网上也找不到标准的翻译方法,以前书上也没具体介绍过,纯属自己瞎翻译。

C 代表是否使用高速缓冲存储器, 而 B 代表是否使用写缓冲区。
这样,dma_alloc_writecombine 分配出来的内存不使用缓存,但是会使用写缓冲区。而 dma_alloc_coherent 则二者都不使用。
C B 位的具体含义

  • 0 0 无cache,无写缓冲;任何对memory的读写都反映到总线上。对 memory 的操作过程中CPU需要等待。
  • 0 1 无cache,有写缓冲;读操作直接反映到总线上;写操作,CPU将数据写入到写缓冲后继续运行,由写缓冲进行写回操作。
  • 1 0 有cache,写通模式;读操作首先考虑cache hit;写操作时直接将数据写入写缓冲,如果同时出现cache hit,那么也更新cache。
  • 1 1 有cache,写回模式;读操作首先考虑cache hit;写操作也首先考虑cache hit。

效率最高的写回,其次写通,再次写缓冲,最次非CACHE一致性操作。
其实,写缓冲也是一种非常简单得CACHE,为何这么说呢。
我们知道,DDR是以突发读写的,一次读写总线上实际会传输一个burst的长度,这个长度一般等于一个cache line的长度。
cache line是32bytes。即使读1个字节数据,也会传输32字节,放弃31字节。
写缓冲是以CACHE LINE进行的,所以写效率会高很多。