我们看下题目:打平的数据内容如下:
let arr = [
{id: 1, name: '部门1', pid: 0},
{id: 2, name: '部门2', pid: 1},
{id: 3, name: '部门3', pid: 1},
{id: 4, name: '部门4', pid: 3},
{id: 5, name: '部门5', pid: 4},
]
输出结果:
[
{
"id": 1,
"name": "部门1",
"pid": 0,
"children": [
{
"id": 2,
"name": "部门2",
"pid": 1,
"children": []
},
{
"id": 3,
"name": "部门3",
"pid": 1,
"children": [
// 结果 ,,,
]
}
]
}
]
什么是好算法,什么是坏算法
判断一个算法的好坏,一般从执行时间和占用空间来看,执行时间越短,占用的内存空间越小,那么它就是好的算法。对应的,我们常常用时间复杂度代表执行时间,空间复杂度代表占用的内存空间。
不考虑性能实现,递归遍历查找
主要思路是提供一个递getChildren的方法,该方法递归去查找子集。 就这样,不用考虑性能,无脑去查,大多数人只知道递归,就是写不出来。。。
/**
* 递归查找,获取children
*/
const getChildren = (data, result, pid) => {
for (const item of data) {
if (item.pid === pid) {
const newItem = {...item, children: []};
result.push(newItem);
getChildren(data, newItem.children, item.id);
}
}
}
/**
* 转换方法
*/
const arrayToTree = (data, pid) => {
const result = [];
getChildren(data, result, pid)
return result;
}
不用递归,也能搞定
主要思路是先把数据转成Map去存储,之后遍历的同时借助对象的引用,直接从Map找对应的数据做存储
function arrayToTree(items) {
const result = []; // 存放结果集
const itemMap = {}; //
// 先转成map存储
for (const item of items) {
itemMap[item.id] = {...item, children: []}
}
for (const item of items) {
const id = item.id;
const pid = item.pid;
const treeItem = itemMap[id];
if (pid === 0) {
result.push(treeItem);
} else {
if (!itemMap[pid]) {
itemMap[pid] = {
children: [],
}
}
itemMap[pid].children.push(treeItem)
}
}
return result;
}
从上面的代码我们分析,有两次循环,该实现的时间复杂度为O(2n),需要一个Map把数据存储起来,空间复杂度O(n)
最优性能
主要思路也是先把数据转成Map去存储,之后遍历的同时借助对象的引用,直接从Map找对应的数据做存储。不同点在遍历的时候即做Map存储,有找对应关系。性能会更好。
function arrayToTree(items) {
const result = []; // 存放结果集
const itemMap = {}; //
for (const item of items) {
const id = item.id;
const pid = item.pid;
if (!itemMap[id]) {
itemMap[id] = {
children: [],
}
}
itemMap[id] = {
...item,
children: itemMap[id]['children']
}
const treeItem = itemMap[id];
if (pid === 0) {
result.push(treeItem);
} else {
if (!itemMap[pid]) {
itemMap[pid] = {
children: [],
}
}
itemMap[pid].children.push(treeItem)
}
}
return result;
}
从上面的代码我们分析,一次循环就搞定了,该实现的时间复杂度为O(n),需要一个Map把数据存储起来,空间复杂度O(n)
小试牛刀
方法 | 1000(条) | 10000(条) | 20000(条) | 50000(条) |
---|---|---|---|---|
递归实现 | 154.596ms | 1.678s | 7.152s | 75.412s |
不用递归,两次遍历 | 0.793ms | 16.499ms | 45.581ms | 97.373ms |
不用递归,一次遍历 | 0.639ms | 6.397ms | 25.436ms | 44.719ms |
从我们的测试结果来看,随着数量的增大,递归的实现会越来越慢,基本成指数的增长方式。