爬楼梯#70(简单)
class Solution {public int climbStairs(int n) {//法一:递归,时间复杂度O(2^n),空间复杂度O(2^n)if (n <= 2) {return n;}return climbStairs(n-1) + climbStairs(n-2);}}//====================================================================class Solution {Map<Integer, Integer> map = new HashMap<>();public int climbStairs(int n) {//法二:递归+记忆化,时间复杂度O(n),空间复杂度O(n)//因为有大量的中间结果进行了重复计算,所以可以把这些重复结果存起来。if (n < 3) {return n;}if (map.containsKey(n)) {return map.get(n);}int sum = climbStairs(n-1) + climbStairs(n-2);map.put(n, sum);return sum;}}//=======================================================================class Solution {public int climbStairs(int n) {//法三:迭代,时间复杂度O(n),空间复杂度O(1)if (n < 3) {return n;}int a = 1, b = 2, c = 0;for (int i = 3; i <= n; i++) {c = a + b;a = b;b = c;}return b;}}//=======================================================================class Solution {public int climbStairs(int n) {//法四:动态规划,时间复杂度O(n),空间复杂度O(1)int a = 0, b = 0, c = 1;for (int i = 1; i <= n; i++) {//这里要从1开始,保证只循环n次a = b;b = c;c = a + b;}//这里就只能return creturn c;}}//========================================================================//矩阵快速幂还是看官方题解吧。
颜色分类#75(中等)
class Solution {public void sortColors(int[] nums) {//法一:两次遍历,统计个数然后填充回去。时间复杂度O(n),空间复杂度O(1)int countOfZero = 0, countOfOne = 0, countOfTwo = 0;int n = nums.length;for (int i = 0; i < n; i++) {if (nums[i] == 0) {countOfZero++;} else if (nums[i] == 1) {countOfOne++;} else {countOfTwo++;}}for (int i = 0; i < n; i++) {if (i < countOfZero) {nums[i] = 0;} else if (i < countOfOne + countOfZero) {nums[i] = 1;} else {nums[i] = 2;}}}}//======================================================================class Solution {public void sortColors(int[] nums) {//法二:单指针两次遍历。时间复杂度O(n),空间复杂度O(1)int n = nums.length;int ptr = 0;for (int i = 0; i < n; i++) {if (nums[i] == 0) {swap(nums, i, ptr);ptr++;}}for (int i = 0; i < n; i++) {if (nums[i] == 1) {swap(nums, i, ptr);ptr++;}}}public void swap(int[] nums, int index1, int index2) {int temp = nums[index1];nums[index1] = nums[index2];nums[index2] = temp;}}//=====================================================================class Solution {public void sortColors(int[] nums) {//法三:liweiwei的循环不变量做法。int len = nums.length;if (len < 2) {return;}// all in [0, zero) = 0// all in [zero, i) = 1// all in (two, len - 1] = 2// 循环终止条件是 i == two,那么循环可以继续的条件是 i < two// 为了保证初始化的时候 [0, zero) 为空,设置 zero = 0,// 所以下面遍历到 0 的时候,先交换,再加int zero = 0;// 为了保证初始化的时候 (two, len - 1] 为空,设置 two = len-1// 所以下面遍历到 2 的时候,先交换,再减int two = len - 1;int i = 0;// 当 i == two 上面的三个子区间正好覆盖了全部数组// 因此,循环可以继续的条件是 i < twowhile (i <= two) {if (nums[i] == 0) {swap(nums, i, zero);zero++;i++;} else if (nums[i] == 1) {i++;} else {swap(nums, i, two);two--;}}}public void swap(int[] nums, int index1, int index2) {int temp = nums[index1];nums[index1] = nums[index2];nums[index2] = temp;}}
子集#78(中等)
class Solution {
public List<List<Integer>> subsets(int[] nums) {
//法一:回溯.时间复杂度O(n*(2^n)),空间复杂度O(n)
List<List<Integer>> ans = new LinkedList<>();
List<Integer> temp = new LinkedList<>();
dfs(0, nums, ans, temp);
return ans;
}
private void dfs(int index, int[] nums, List<List<Integer>> ans, List<Integer> temp) {
if (index == nums.length) {
ans.add(new ArrayList<>(temp));
return;
}
temp.add(nums[index]);
dfs(index + 1, nums, ans, temp);
temp.remove(temp.size() - 1);
dfs(index + 1, nums, ans, temp);
}
}
//===========================================================================
class Solution {
//官方题解,用二进制掩码的方式选取。
List<Integer> t = new ArrayList<Integer>();
List<List<Integer>> ans = new ArrayList<List<Integer>>();
public List<List<Integer>> subsets(int[] nums) {
int n = nums.length;
for (int mask = 0; mask < (1 << n); ++mask) {
t.clear();
for (int i = 0; i < n; ++i) {
if ((mask & (1 << i)) != 0) {
t.add(nums[i]);
}
}
ans.add(new ArrayList<Integer>(t));
}
return ans;
}
}
柱状图中最大的矩形#84(困难)
https://leetcode.cn/problems/largest-rectangle-in-histogram/
合并两个有序数组#88(简单)
class Solution {
public void merge(int[] nums1, int m, int[] nums2, int n) {
//法一:先添加,后排序,时间复杂度O((m+n)log(m+n)),空间复杂度O((m+n)log(m+n))
for (int i = 0; i < n; i++) {
nums1[m + i] = nums2[i];
}
Arrays.sort(nums1);
}
}
//==========================================================================
class Solution {
public void merge(int[] nums1, int m, int[] nums2, int n) {
//法二:中间数组+双指针.时间复杂度O(m+n),空间复杂度O(m+n)
int[] temp = new int[m+n];
int p1 = 0, p2 = 0;
int cur;
while (p1 < m || p2 < n) {
if (p1 == m) {
cur = nums2[p2++];
} else if (p2 == n) {
cur = nums1[p1++];
} else if (nums1[p1] < nums2[p2]) {
cur = nums1[p1++];
} else {
cur = nums2[p2++];
}
temp[p1+p2-1] = cur;
}
for (int i = 0; i < m + n; i++) {
nums1[i] = temp[i];
}
}
}
//========================================================================
class Solution {
public void merge(int[] nums1, int m, int[] nums2, int n) {
//法三:双指针后入,不需要多余数组.时间复杂度O(m+n),空间复杂度O(1)
int p1 = m - 1, p2 = n - 1;
int tail = m + n - 1;
int cur;
while (p1 > -1 || p2 > -1) {
if (p1 == -1) {
cur = nums2[p2--];
} else if (p2 == -1) {
cur = nums1[p1--];
} else if (nums1[p1] < nums2[p2]) {
cur = nums2[p2--];
} else {
cur = nums1[p1--];
}
nums1[tail--] = cur;
}
}
}
子集Ⅱ#90(中等)
class Solution {
Set<List<Integer>> res = new HashSet<>();
List<Integer> temp = new LinkedList<>();
public List<List<Integer>> subsetsWithDup(int[] nums) {
//排序+set回溯,时间复杂度O(n*(2^n)),空间复杂度O(n)
Arrays.sort(nums);
dfs(0, nums);
return new ArrayList<>(res);
}
public void dfs(int index, int[] nums) {
if (index == nums.length) {
res.add(new ArrayList<>(temp));
return;
}
temp.add(nums[index]);
dfs(index + 1, nums);
temp.remove(temp.size() - 1);
dfs(index + 1, nums);
}
}
//官方题解===============================================================
class Solution {
List<Integer> t = new ArrayList<Integer>();
List<List<Integer>> ans = new ArrayList<List<Integer>>();
public List<List<Integer>> subsetsWithDup(int[] nums) {
Arrays.sort(nums);
dfs(false, 0, nums);
return ans;
}
public void dfs(boolean choosePre, int cur, int[] nums) {
if (cur == nums.length) {
ans.add(new ArrayList<Integer>(t));
return;
}
dfs(false, cur + 1, nums);
if (!choosePre && cur > 0 && nums[cur - 1] == nums[cur]) {
return;
}
t.add(nums[cur]);
dfs(true, cur + 1, nums);
t.remove(t.size() - 1);
}
}
//三叶姐的题解,另一个思路,感觉比官解合理一点=======================
class Solution {
public List<List<Integer>> subsetsWithDup(int[] nums) {
Arrays.sort(nums);
List<List<Integer>> ans = new ArrayList<>();
List<Integer> cur = new ArrayList<>();
dfs(nums, 0, cur, ans);
return ans;
}
/**
* @param nums 原输入数组
* @param u 当前决策到原输入数组中的哪一位
* @param cur 当前方案
* @param ans 最终结果集
*/
void dfs(int[] nums, int u, List<Integer> cur, List<List<Integer>> ans) {
// 所有位置都决策完成,将当前方案放入结果集
int n = nums.length;
if (n == u) {
ans.add(new ArrayList<>(cur));
return;
}
// 记录当前位置是什么数值(令数值为 t),并找出数值为 t 的连续一段
int t = nums[u];
int last = u;
while (last < n && nums[last] == nums[u]) last++;
// 不选当前位置的元素,直接跳到 last 往下决策
dfs(nums, last, cur, ans);
// 决策选择不同个数的 t 的情况:选择 1 个、2 个、3 个 ... k 个
for (int i = u; i < last; i++) {
cur.add(nums[i]);
dfs(nums, last, cur, ans);
}
// 回溯对数值 t 的选择
for (int i = u; i < last; i++) {
cur.remove(cur.size() - 1);
}
}
}
作者:AC_OIer
链接:https://leetcode.cn/problems/subsets-ii/solution/gong-shui-san-xie-yi-ti-shuang-jie-hui-s-g77q/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
