显式锁

有了synchronized为什么还要Lock?
Java程序是靠synchronized关键字实现锁功能的,使用synchronized关键字将会隐式地获取锁,但是它将锁的获取和释放固化了,也就是先获取再释放。
xainshi.png

Lock的标准用法

  1. lock.lock();
  2. try{
  3. count++
  4. }finally{
  5. lock.unlock();
  6. }

在finally块中释放锁,目的是保证在获取到锁之后,最终能够被释放。不要将获取锁的过程写在try块中,因为如果在获取锁(自定义锁的实现)时发生了异常,异常抛出的同时,也会导致锁无故释放。

Lock的常用API

locak.png

ReentrantLock

锁的可重入

简单地讲就是:“同一个线程对于已经获得到的锁,可以多次继续申请到该锁的使用权”。而synchronized关键字隐式的支持重进入,比如一个synchronized修饰的递归方法,在方法执行时,执行线程在获取了锁之后仍能连续多次地获得该锁。ReentrantLock在调用lock()方法时,已经获取到锁的线程,能够再次调用lock()方法获取锁而不被阻塞。

公平和非公平锁

如果在时间上,先对锁进行获取的请求一定先被满足,那么这个锁是公平的,反之,是不公平的。公平的获取锁,也就是等待时间最长的线程最优先获取锁,也可以说锁获取是顺序的。 ReentrantLock提供了一个构造函数,能够控制锁是否是公平的。事实上,公平的锁机制往往没有非公平的效率高。
在激烈竞争的情况下,非公平锁的性能高于公平锁的性能的一个原因是:在恢复一个被挂起的线程与该线程真正开始运行之间存在着严重的延迟。假设线程A持有一个锁,并且线程B请求这个锁。由于这个锁已被线程A持有,因此B将被挂起。当A释放锁时,B将被唤醒,因此会再次尝试获取锁。与此同时,如果C也请求这个锁,那么C很可能会在B被完全唤醒之前获得、使用以及释放这个锁。这样的情况是一种“双赢”的局面:B获得锁的时刻并没有推迟,C更早地获得了锁,并且吞吐量也获得了提高。

读写锁ReentrantReadWriteLock

之前提到锁(如Mutex和ReentrantLock)基本都是排他锁,这些锁在同一时刻只允许一个线程进行访问,而读写锁在同一时刻可以允许多个读线程访问,但是在写线程访问时,所有的读线程和其他写线程均被阻塞。读写锁维护了一对锁,一个读锁和一个写锁,通过分离读锁和写锁,使得并发性相比一般的排他锁有了很大提升。
除了保证写操作对读操作的可见性以及并发性的提升之外,读写锁能够简化读写交互场景的编程方式。假设在程序中定义一个共享的用作缓存数据结构,它大部分时间提供读服务(例如查询和搜索),而写操作占有的时间很少,但是写操作完成之后的更新需要对后续的读服务可见。
在没有读写锁支持的(Java 5之前)时候,如果需要完成上述工作就要使用Java的等待通知机制,就是当写操作开始时,所有晚于写操作的读操作均会进入等待状态,只有写操作完成并进行通知之后,所有等待的读操作才能继续执行(写操作之间依靠synchronized关键进行同步),这样做的目的是使读操作能读取到正确的数据,不会出现脏读。改用读写锁实现上述功能,只需要在读操作时获取读锁,写操作时获取写锁即可。当写锁被获取到时,后续(非当前写操作线程)的读写操作都会被阻塞,写锁释放之后,所有操作继续执行,编程方式相对于使用等待通知机制的实现方式而言,变得简单明了。
一般情况下,读写锁的性能都会比排它锁好,因为大多数场景读是多于写的。在读多于写的情况下,读写锁能够提供比排它锁更好的并发性和吞吐量
ReentrantReadWriteLock其实实现的是ReadWriteLock接口

Condition接口

任意一个Java对象,都拥有一组监视器方法(定义在java.lang.Object上),主要包括wait()、wait(long timeout)、notify()以及notifyAll()方法,这些方法与synchronized同步关键字配合,可以实现等待/通知模式。Condition接口也提供了类似Object的监视器方法,与Lock配合可以实现等待/通知模式。
condition.png
shiyong.png

CLH队列锁

CLH队列锁即Craig, Landin, and Hagersten (CLH) locks。
CLH队列锁也是一种基于链表的可扩展、高性能、公平的自旋锁,申请线程仅仅在本地变量上自旋,它不断轮询前驱的状态,假设发现前驱释放了锁就结束自旋。
当一个线程需要获取锁时:
1. 创建一个的QNode,将其中的locked设置为true表示需要获取锁,myPred表示对其前驱结点的引用
Qnode.png
2.线程A对tail域调用getAndSet方法,使自己成为队列的尾部,同时获取一个指向其前驱结点的引用myPred
getAndSet.png
线程B需要获得锁,同样的流程再来一遍
B.png

3.线程就在前驱结点的locked字段上旋转,直到前驱结点释放锁(前驱节点的锁值 locked == false)

4.当一个线程需要释放锁时,将当前结点的locked域设置为false,同时回收前驱结点
4.png
如上图所示,前驱结点释放锁,线程A的myPred所指向的前驱结点的locked字段变为false,线程A就可以获取到锁。

AbstractQueuedSynchronizer

队列同步器AbstractQueuedSynchronizer(以下简称同步器或AQS),是用来构建锁或者其他同步组件的基础框架,它使用了一个int成员变量表示同步状态,通过内置的FIFO队列来完成资源获取线程的排队工作。

AQS使用方式和其中的设计模式

AQS的主要使用方式是继承,子类通过继承AQS并实现它的抽象方法来管理同步状态,在AQS里由一个int型的state来代表这个状态,在抽象方法的实现过程中免不了要对同步状态进行更改,这时就需要使用同步器提供的3个方法(getState()、setState(int newState)和compareAndSetState(int expect,int update))来进行操作,因为它们能够保证状态的改变是安全的。在实现上,子类推荐被定义为自定义同步组件的静态内部类,AQS自身没有实现任何同步接口,它仅仅是定义了若干同步状态获取和释放的方法来供自定义同步组件使用,同步器既可以支持独占式地获取同步状态,也可以支持共享式地获取同步状态,这样就可以方便实现不同类型的同步组件(ReentrantLock、ReentrantReadWriteLock和CountDownLatch等)。
同步器是实现锁(也可以是任意同步组件)的关键,在锁的实现中聚合同步器。可以这样理解二者之间的关系:
锁是面向使用者的,它定义了使用者与锁交互的接口(比如可以允许两个线程并行访问),隐藏了实现细节;
同步器面向的是锁的实现者,它简化了锁的实现方式,屏蔽了同步状态管理、线程的排队、等待与唤醒等底层操作。锁和同步器很好地隔离了使用者和实现者所需关注的领域。实现者需要继承同步器并重写指定的方法,随后将同步器组合在自定义同步组件的实现中,并调用同步器提供的模板方法,而这些模板方法将会调用使用者重写的方法。

模板方法模式

同步器的设计基于模板方法模式。模板方法模式的意图是,定义一个操作中的算法的骨架,而将一些步骤的实现延迟到子类中。模板方法使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤。我们最常见的就是Spring框架里的各种Template。

AQS中的方法

模板方法

实现自定义同步组件时,将会调用同步器提供的模板方法,
aqs1.png

可重写的方法

qQ图片20180419214650.jpg.png

访问或修改同步状态的方法

重写同步器指定的方法时,需要使用同步器提供的如下3个方法来访问或修改同步状态。
•getState():获取当前同步状态。
•setState(int newState):设置当前同步状态。
•compareAndSetState(int expect,int update):使用CAS设置当前状态,该方法能够保证状态设置的原子性。

public class SelfLock implements Lock {
    /**
     * 静态内部类 自定义同步器
     */
    private static class Sync extends AbstractQueuedSynchronizer{
        private static final long serialVersionUID=-424353625262L;

        /**
         * 获取锁 如果state从0变为1  将当前线程设置为排他锁
         * @param arg
         * @return
         */
        @Override
        protected boolean tryAcquire(int arg) {
            if (compareAndSetState(0,1)){
                setExclusiveOwnerThread(Thread.currentThread());
                return true;
            }
            return false;
        }

        /**
         * 释放锁  判定state是否为1 若等于0 抛出监控状态异常 将ExclusiveOwnerThread设置为null 状态设为0
         * @param arg
         * @return
         */
        @Override
        protected boolean tryRelease(int arg) {
            if (getState()==0){
                throw new IllegalMonitorStateException();
            }
            setExclusiveOwnerThread(null);
            setState(0);
            return true;
        }


        /**
         * 判断当前是否为再用状态
         */
        @Override
        protected boolean isHeldExclusively() {
            return getState()==1;
        }

        //返回一个Condition。每个Condition都包含一个condition队列
        Condition newCondition(){
            return new ConditionObject();
        }

    }

    /**
     * 将操作代理到Sync上
     */
    private  Sync sync=new Sync();


    @Override
    public void lock() {
        System.out.println(Thread.currentThread().getName()+"ready get lock");
        sync.acquire(1);
        System.out.println(Thread.currentThread().getName()+"already get lock");
    }

    @Override
    public void lockInterruptibly() throws InterruptedException {
        sync.acquireInterruptibly(1);

    }

    @Override
    public boolean tryLock() {
        return sync.tryAcquire(1);
    }

    @Override
    public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {
        return sync.tryRelease(1);
    }

    @Override
    public void unlock() {
        System.out.println(Thread.currentThread().getName()+"release ready lock");
        sync.release(1);
        System.out.println(Thread.currentThread().getName()+"release already lock");

    }

    @Override
    public Condition newCondition() {
        return sync.newCondition();
    }
}

深入源码

AQS中的数据结构-节点和同步队列

节点Node

既然说Java中的AQS是CLH队列锁的一种变体实现,毫无疑问,作为队列来说,必然要有一个节点的数据结构来保存我们前面所说的各种域,比如前驱节点,节点的状态等,这个数据结构就是AQS中的内部类Node。作为这个数据结构应该关心些什么信息?
1、线程信息,肯定要知道我是哪个线程;
2、队列中线程状态,既然知道是哪一个线程,肯定还要知道线程当前处在什么状态,是已经取消了“获锁”请求,还是在“”等待中”,或者说“即将得到锁”
3、前驱和后继线程,因为是一个等待队列,那么也就需要知道当前线程前面的是哪个线程,当前线程后面的是哪个线程(因为当前线程释放锁以后,理当立马通知后继线程去获取锁)。
所以这个Node类是这么设计的:
node.png
线程的2种等待模式:
SHARED:表示线程以共享的模式等待锁(如ReadLock)
EXCLUSIVE:表示线程以互斥的模式等待锁(如ReetrantLock),互斥就是一把锁只能由一个线程持有,不能同时存在多个线程使用同一个锁
线程在队列中的状态枚举:
CANCELLED:值为1,表示线程的获锁请求已经“取消”
SIGNAL:值为-1,表示该线程一切都准备好了,就等待锁空闲出来给我
CONDITION:值为-2,表示线程等待某一个条件(Condition)被满足
PROPAGATE:值为-3,当线程处在“SHARED”模式时,该字段才会被使用上
初始化Node对象时,默认为0
成员变量:
waitStatus:该int变量表示线程在队列中的状态,其值就是上述提到的CANCELLED、SIGNAL、CONDITION、PROPAGATE
prev:该变量类型为Node对象,表示该节点的前一个Node节点(前驱)
next:该变量类型为Node对象,表示该节点的后一个Node节点(后继)
thread:该变量类型为Thread对象,表示该节点的代表的线程
nextWaiter:该变量类型为Node对象,表示等待condition条件的Node节点
当前线程获取同步状态失败时,同步器会将当前线程以及等待状态等信息构造成为一个节点(Node)并将其加入同步队列,同时会阻塞当前线程,当同步状态释放时,会把首节点中的线程唤醒,使其再次尝试获取同步状态。同步队列中的节点(Node)用来保存获取同步状态失败的线程引用、等待状态以及前驱和后继节点。

head和tail

AQS还拥有首节点(head)和尾节点(tail)两个引用,一个指向队列头节点,而另一个指向队列尾节点

节点在同步队列中的增加和移出

节点加入到同步队列

当一个线程成功地获取了同步状态(或者锁),其他线程将无法获取到同步状态,也就是获取同步状态失败,AQS会将这个线程以及等待状态等信息构造成为一个节点(Node)并将其加入同步队列的尾部。而这个加入队列的过程必须要保证线程安全,因此同步器提供了一个基于CAS的设置尾节点的方法:compareAndSetTail(Node expect,Nodeupdate),它需要传递当前线程“认为”的尾节点和当前节点,只有设置成功后,当前节点才正式与之前的尾节点建立关联。
最后调用acquireQueued(Node node,int arg)方法,使得该节点以“死循环”的方式获取同步状态。如果获取不到则阻塞节点中的线程,而被阻塞线程的唤醒主要依靠前驱节点的出队或阻塞线程被中断来实现。
addWaiter(Node node)方法中

private Node addWaiter(Node mode) {
        Node node = new Node(Thread.currentThread(), mode);
        // Try the fast path of enq; backup to full enq on failure
        Node pred = tail;
        if (pred != null) {
            node.prev = pred;
            if (compareAndSetTail(pred, node)) {
                pred.next = node;
                return node;
            }
        }
        enq(node);
        return node;
    }

将当前线程包装成Node后,队列不为空的情况下,先尝试把当前节点加入队列并成为尾节点,如果不成功或者队列为空进入enq(final Node node)方法。

private Node enq(final Node node) {
        for (;;) {
            Node t = tail;
            if (t == null) { // Must initialize
                if (compareAndSetHead(new Node()))
                    tail = head;
            } else {
                node.prev = t;
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }
        }
    }

在enq(final Node node)方法中,同步器通过“死循环”来保证节点的正确添加,这个死循环中,做了两件事,第一件,如果队列为空,初始化队列,new出一个空节点,并让首节点(head)和尾节点(tail)两个引用都指向这个空节点;第二件事,把当前节点加入队列。
在“死循环”中只有通过CAS将节点设置成为尾节点之后,当前线程才能从该方法返回,否则,当前线程不断地尝试设置。
节点进入同步队列之后,观察acquireQueued(Node node,int arg)方法

final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

其实就是一个自旋的过程,每个节点(或者说每个线程)都在自省地观察,当条件满足,获取到了同步状态,就可以从这个自旋过程中退出,否则依旧留在这个自旋过程中(并会阻塞节点的线程)。
在acquireQueued(final Node node,int arg)方法中,当前线程在“死循环”中尝试获取同步状态,而只有前驱节点是头节点才能够尝试获取同步状态,这是为什么?原因有两个。
第一,头节点是成功获取到同步状态的节点,而头节点的线程释放了同步状态之后,将会唤醒其后继节点,后继节点的线程被唤醒后需要检查自己的前驱节点是否是头节点。
第二,维护同步队列的FIFO原则。
当前线程获取到同步状态后,让首节点(head)这个引用指向自己所在节点。当同步状态获取成功后,当前线程就从acquire方法返回了。如果同步器实现的是锁,那就代表当前线程获得了锁。

释放

当前线程获取同步状态并执行了相应逻辑之后,就需要释放同步状态,使得后续节点能够继续获取同步状态。通过调用同步器的release(int arg)方法可以释放同步状态,该方法在释放了同步状态之后,会唤醒其后继节点(进而使后继节点重新尝试获取同步状态)。

 public final boolean release(int arg) {
        if (tryRelease(arg)) {
            Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }

该方法执行时,会唤醒首节点(head)所指向节点的后继节点线程,unparkSuccessor(Node node)方法使用LockSupport来唤醒处于等待状态的线程。
而在unparkSuccessor中,

 private void unparkSuccessor(Node node) {
        /*
         * If status is negative (i.e., possibly needing signal) try
         * to clear in anticipation of signalling.  It is OK if this
         * fails or if status is changed by waiting thread.
         */
        int ws = node.waitStatus;
        if (ws < 0)
            compareAndSetWaitStatus(node, ws, 0);

        /*
         * Thread to unpark is held in successor, which is normally
         * just the next node.  But if cancelled or apparently null,
         * traverse backwards from tail to find the actual
         * non-cancelled successor.
         */
        Node s = node.next;
        if (s == null || s.waitStatus > 0) {
            s = null;
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        if (s != null)
            LockSupport.unpark(s.thread);
    }

在获取同步状态时,同步器维护一个同步队列,获取状态失败的线程都会被加入到队列中并在队列中进行自旋;移出队列(或停止自旋)的条件是前驱节点为头节点且成功获取了同步状态。在释放同步状态时,同步器调用tryRelease(int arg)方法释放同步状态,然后唤醒head指向节点的后继节点。

共享式同步状态获取与释放

共享式获取与独占式获取最主要的区别在于同一时刻能否有多个线程同时获取到同步状态。以读写为例,如果一个程序在进行读操作,那么这一时刻写操作均被阻塞,而读操作能够同时进行。写操作要求对资源的独占式访问,而读操作可以是共享式访问。
在acquireShared(int arg)方法中,同步器调用tryAcquireShared(int arg)方法尝试获取同步状态,tryAcquireShared(int arg)方法返回值为int类型,当返回值大于等于0时,表示能够获取到同步状态。因此,在共享式获取的自旋过程中,成功获取到同步状态并退出自旋的条件就是tryAcquireShared(int arg)方法返回值大于等于0。可以看到,在doAcquireShared(int arg)方法的自旋过程中,如果当前节点的前驱为头节点时,尝试获取同步状态,如果返回值大于等于0,表示该次获取同步状态成功并从自旋过程中退出。
该方法在释放同步状态之后,将会唤醒后续处于等待状态的节点。对于能够支持多个线程同时访问的并发组件(比如Semaphore),它和独占式主要区别在于tryReleaseShared(int arg)方法必须确保同步状态(或者资源数)线程安全释放,一般是通过循环和CAS来保证的,因为释放同步状态的操作会同时来自多个线程。

了解Condition的实现

Condition的数据结构

等待队列是一个FIFO的队列,在队列中的每个节点都包含了一个线程引用,该线程就是在Condition对象上等待的线程,如果一个线程调用了Condition.await()方法,那么该线程将会释放锁、构造成节点加入等待队列并进入等待状态。事实上,节点的定义复用了同步器中节点的定义,也就是说,同步队列和等待队列中节点类型都是同步器的静态内部类。

con1.png
一个Condition包含一个等待队列,Condition拥有首节点(firstWaiter)和尾节点(lastWaiter)。当前线程调用Condition.await()方法,将会以当前线程构造节点,并将节点从尾部加入等待队列。Condition拥有首尾节点的引用,而新增节点只需要将原有的尾节点nextWaiter指向它,并且更新尾节点即可。上述节点引用更新的过程并没有使用CAS保证,原因在于调用await()方法的线程必定是获取了锁的线程,也就是说该过程是由锁来保证线程安全的。
Lock(更确切地说是同步器)拥有一个同步队列和多个等待队列。一个Condition包含一个等待队列,Condition拥有首节点(firstWaiter)和尾节点(lastWaiter)。当前线程调用Condition.await()方法,将会以当前线程构造节点,并将节点从尾部加入等待队列。Condition拥有首尾节点的引用,而新增节点只需要将原有的尾节点nextWaiter指向它,并且更新尾节点即可。上述节点引用更新的过程并没有使用CAS保证,原因在于调用await()方法的线程必定是获取了锁的线程,也就是说该过程是由锁来保证线程安全的。
Lock(更确切地说是同步器)拥有一个同步队列和多个等待队列。
con2.png
调用Condition的await()方法(或者以await开头的方法),会使当前线程进入等待队列并释放锁,同时线程状态变为等待状态。当从await()方法返回时,当前线程一定获取了Condition相关联的锁。
如果从队列(同步队列和等待队列)的角度看await()方法,当调用await()方法时,相当于同步队列的首节点(获取了锁的节点)移动到Condition的等待队列中。调用该方法的线程成功获取了锁的线程,也就是同步队列中的首节点,该方法会将当前线程构造成节点并加入等待队列中,然后释放同步状态,唤醒同步队列中的后继节点,然后当前线程会进入等待状态。当等待队列中的节点被唤醒,则唤醒节点的线程开始尝试获取同步状态。如果不是通过其他线程调用Condition.signal()方法唤醒,而是对等待线程进行中断,则会抛出InterruptedException。
被唤醒后的线程,将从await()方法中的while循环中退出(isOnSyncQueue(Node node)方法返回true,节点已经在同步队列中),进而调用同步器的acquireQueued()方法加入到获取同步状态的竞争中。
成功获取同步状态(或者说锁)之后,被唤醒的线程将从先前调用的await()方法返回,此时该线程已经成功地获取了锁。
Condition的signalAll()方法,相当于对等待队列中的每个节点均执行一次signal()方法,效果就是将等待队列中所有节点全部移动到同步队列中,并唤醒每个节点的线程。

ReentrantLock的实现

锁的可重入

重进入是指任意线程在获取到锁之后能够再次获取该锁而不会被锁所阻塞,该特性的实现需要解决以下两个问题。
1)线程再次获取锁。锁需要去识别获取锁的线程是否为当前占据锁的线程,如果是,则再次成功获取。该方法返回true,则表示有线程比当前线程更早地请求获取锁,因此需要等待前驱线程获取并释放锁之后才能继续获取锁。

ReentrantReadWriteLock的实现

读写状态的设计

读写锁同样依赖自定义同步器来实现同步功能,而读写状态就是其同步器的同步状态。
回想ReentrantLock中自定义同步器的实现,同步状态表示锁被一个线程重复获取的次数,而读写锁的自定义同步器需要在同步状态(一个整型变量)上维护多个读线程和一个写线程的状态,使得该状态的设计成为读写锁实现的关键。
如果在一个整型变量上维护多种状态,就一定需要“按位切割使用”这个变量,读写锁将变量切分成了两个部分,高16位表示读,低16位表示写,读写锁是如何迅速确定读和写各自的状态呢?
答案是通过位运算。假设当前同步状态值为S,写状态等于S&0x0000FFFF(将高16位全部抹去),读状态等于S>>>16(无符号补0右移16位)。当写状态增加1时,等于S+1,当读状态增加1时,等S+(1<<16),也就是S+0x00010000。根据状态的划分能得出一个推论:S不等于0时,当写状态(S&0x0000FFFF)等于0时,则读状态(S>>>16)大于0,即读锁已被获取。

写锁的获取与释放

写锁是一个支持重进入的排它锁。如果当前线程已经获取了写锁,则增加写状态。如果当前线程在获取写锁时,读锁已经被获取(读状态不为0)或者该线程不是已经获取写锁的线程,则当前线程进入等待状态。
该方法除了重入条件(当前线程为获取了写锁的线程)之外,增加了一个读锁是否存在的判断。如果存在读锁,则写锁不能被获取,原因在于:读写锁要确保写锁的操作对读锁可见,如果允许读锁在已被获取的情况下对写锁的获取,那么正在运行的其他读线程就无法感知到当前写线程的操作。因此,只有等待其他读线程都释放了读锁,写锁才能被当前线程获取,而写锁一旦被获取,则其他读写线程的后续访问均被阻塞。
写锁的释放与ReentrantLock的释放过程基本类似,每次释放均减少写状态,当写状态为0时表示写锁已被释放,从而等待的读写线程能够继续访问读写锁,同时前次写线程的修改对后续读写线程可见。

读锁的获取与释放

读锁是一个支持重进入的共享锁,它能够被多个线程同时获取,在没有其他写线程访问(或者写状态为0)时,读锁总会被成功地获取,而所做的也只是(线程安全的)增加读状态。如果当前线程已经获取了读锁,则增加读状态。
如果当前线程在获取读锁时,写锁已被其他线程获取,则进入等待状态。读状态是所有线程获取读锁次数的总和,而每个线程各自获取读锁的次数只能选择保存在ThreadLocal中,由线程自身维护。在tryAcquireShared(int unused)方法中,如果其他线程已经获取了写锁,则当前线程获取读锁失败,进入等待状态。如果当前线程获取了写锁或者写锁未被获取,则当前线程(线程安全,依靠CAS保证)增加读状态,成功获取读锁。读锁的每次释放(线程安全的,可能有多个读线程同时释放读锁)均减少读状态。

锁的升降级

锁降级指的是写锁降级成为读锁。如果当前线程拥有写锁,然后将其释放,最后再获取读锁,这种分段完成的过程不能称之为锁降级。
锁降级是指把持住(当前拥有的)写锁,再获取到读锁,随后释放(先前拥有的)写锁的过程。
RentrantReadWriteLock不支持锁升级(把持读锁、获取写锁,最后释放读锁的过程)。目的是保证数据可见性,如果读锁已被多个线程获取,其中任意线程成功获取了写锁并更新了数据,则其更新对其他获取到读锁的线程是不可见的。