// 参数onlyIfAbsent表示是否替换原值
// 参数evict我们可以忽略它,它主要用来区别通过put添加还是创建时初始化数据的
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// 空表,需要初始化
if ((tab = table) == null || (n = tab.length) == 0)
// resize()不仅用来调整大小,还用来进行初始化配置
n = (tab = resize()).length;
// (n - 1) & hash这种方式也熟悉了吧?都在分析ArrayDeque中有体现
//这里就是看下在hash位置有没有元素,实际位置是hash % (length-1) 求余运算10%3=1
if ((p = tab[i = (n - 1) & hash]) == null)
// 将元素直接插进去
tab[i] = newNode(hash, key, value, null);
else {
//这时就需要链表或红黑树了
// e是用来查看是不是待插入的元素已经有了,有就替换
Node<K,V> e; K k;
// p是存储在当前位置的元素
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p; //要插入的元素就是p,这说明目的是修改值
// p是一个树节点
else if (p instanceof TreeNode)
// 把节点添加到树中
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
// 这时候就是链表结构了,要把待插入元素挂在链尾
for (int binCount = 0; ; ++binCount) {
//向后循环
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
// 链表比较长,需要树化,
// 由于初始即为p.next,所以当插入第8个元素才会树化
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
// 找到了对应元素,就可以停止了
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
// 继续向后
p = e;
}
}
// e就是被替换出来的元素,这时候就是修改元素值
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
// 默认为空实现,允许我们修改完成后做一些操作
//这里其实是插入成功后执行的,获得的效果就是将e放到了链表结尾。
//所以afterNodeInsertion方法就算什么都不做也可以。
//如果accessOrder为false,那么我们新插入的节点,都不会进入链表了,那LinkedHashMap是在什么时候将元素插入到链表尾部呢?原因在
//如果LinkedHashMap
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
// size太大,达到了capacity的0.75,需要扩容
if (++size > threshold)
resize();
// 默认也是空实现,允许我们插入完成后做一些操作
afterNodeInsertion(evict);
return null;
}
简要流程如下: