ECharts 4 提供了数据集(dataset)组件来单独声明数据,它带来了这些效果:
- 能够贴近这样的数据可视化常见思维方式:(I) 提供数据,(II) 指定数据到视觉的映射,从而形成图表。
- 数据和其他配置可以被分离开来。数据常变,其他配置常不变。分开易于分别管理。
- 数据可以被多个系列或者组件复用,对于大数据量的场景,不必为每个系列创建一份数据。
- 支持更多的数据的常用格式,例如二维数组、对象数组等,一定程度上避免使用者为了数据格式而进行转换。
数据到图形的映射
基于数据,在配置项中指定如何映射到图形,可以进行这些映射:
- 指定 dataset 的列(column)还是行(row)映射为图形系列(series)。这件事可以使series.seriesLayoutBy属性来配置。默认是按照列(column)来映射。
- 指定维度映射的规则:如何从 dataset 的维度(一个“维度”的意思是一行/列)映射到坐标轴、提示框(tooltip)、标签(label)、图形元素大小颜色等(visualMap)。这件事可以使用series.encode属性,以及visualMap组件(如果有需要映射颜色大小等视觉维度的话)来配置。上面的例子中,没有给出这种映射配置,那么 ECharts 就按最常见的理解进行默认映射:X 坐标轴声明为类目轴,默认情况下会自动对应到 dataset.source 中的第一列;不同系列,一一对应到 dataset.source 中后面每一列。
把数据集( dataset )的行或列映射为系列(series)
用户可以使用seriesLayoutBy配置项,改变图表对于行列的理解。seriesLayoutBy可取值:
- ‘column’: 默认值。系列被安放到dataset的列上面。
- ‘row’: 系列被安放到dataset的行上面。
option = {
legend: {},
tooltip: {},
dataset: {
source: [
['product', '2012', '2013', '2014', '2015'],
['Matcha Latte', 41.1, 30.4, 65.1, 53.3],
['Milk Tea', 86.5, 92.1, 85.7, 83.1],
['Cheese Cocoa', 24.1, 67.2, 79.5, 86.4]
]
},
xAxis: [
{type: 'category', gridIndex: 0},
{type: 'category', gridIndex: 1}
],
yAxis: [
{gridIndex: 0},
{gridIndex: 1}
],
grid: [
{bottom: '55%'},
{top: '55%'}
],
series: [
// 这几个系列会在第一个直角坐标系中,每个系列对应到 dataset 的每一行。
{type: 'bar', seriesLayoutBy: 'row'},
{type: 'bar', seriesLayoutBy: 'row'},
{type: 'bar', seriesLayoutBy: 'row'},
// 这几个系列会在第二个直角坐标系中,每个系列对应到 dataset 的每一列。
{type: 'bar', xAxisIndex: 1, yAxisIndex: 1},
{type: 'bar', xAxisIndex: 1, yAxisIndex: 1},
{type: 'bar', xAxisIndex: 1, yAxisIndex: 1},
{type: 'bar', xAxisIndex: 1, yAxisIndex: 1}
]
}
维度(dimension)
当我们把系列(series)对应到“列”的时候,那么每一列就称为一个“维度(dimension)”,而每一行称为数据项(item)。反之,如果我们把系列(series)对应到表行,那么每一行就是“维度(dimension)”,每一列就是数据项(item)。
维度可以有单独的名字,便于在图表中显示。维度名(dimension name)可以在定义在 dataset 的第一行(或者第一列)。例如上面的例子中,’score’、’amount’、’product’就是维度名。从第二行开始,才是正式的数据。dataset.source中第一行(列)到底包含不包含维度名,ECharts 默认会自动探测。当然也可以设置dataset.sourceHeader: true显示声明第一行(列)就是维度,或者dataset.sourceHeader: false表明第一行(列)开始就直接是数据。
维度的定义,也可以使用单独的dataset.dimensions或者series.dimensions来定义,这样可以同时指定维度名,和维度的类型(dimension type):
dimensions: [
{name: 'score'},
// 可以简写为 string,表示维度名。
'amount',
// 可以在 type 中指定维度类型。
{name: 'product', type: 'ordinal'}
],
大多数情况下,我们并不需要去设置维度类型,因为会自动判断。但是如果因为数据为空之类原因导致判断不足够准确时,可以手动设置维度类型。
维度类型(dimension type)可以取这些值:
- ‘number’: 默认,表示普通数据。
- ‘ordinal’: 对于类目、文本这些 string 类型的数据,如果需要能在数轴上使用,须是 ‘ordinal’ 类型。ECharts 默认会自动判断这个类型。但是自动判断也是不可能很完备的,所以使用者也可以手动强制指定。
- ‘time’: 表示时间数据。设置成’time’则能支持自动解析数据成时间戳(timestamp),比如该维度的数据是 ‘2017-05-10’,会自动被解析。如果这个维度被用在时间数轴(axis.type为’time’)上,那么会被自动设置为’time’类型。时间类型的支持参见data。
- ‘float’: 如果设置成’float’,在存储时候会使用TypedArray,对性能优化有好处。
- ‘int’: 如果设置成’int’,在存储时候会使用TypedArray,对性能优化有好处。
数据到图形的映射( series.encode )
var option = {
dataset: {
source: [
['score', 'amount', 'product'],
[89.3, 58212, 'Matcha Latte'],
[57.1, 78254, 'Milk Tea'],
[74.4, 41032, 'Cheese Cocoa'],
[50.1, 12755, 'Cheese Brownie'],
[89.7, 20145, 'Matcha Cocoa'],
[68.1, 79146, 'Tea'],
[19.6, 91852, 'Orange Juice'],
[10.6, 101852, 'Lemon Juice'],
[32.7, 20112, 'Walnut Brownie']
]
},
xAxis: {},
yAxis: {type: 'category'},
series: [
{
type: 'bar',
encode: {
// 将 "amount" 列映射到 X 轴。
x: 'amount',
// 将 "product" 列映射到 Y 轴。
y: 'product'
}
}
]
};
series.encode声明的基本结构如下,其中冒号左边是坐标系、标签等特定名称,如’x’,’y’,’tooltip’等,冒号右边是数据中的维度名(string 格式)或者维度的序号(number 格式,从 0 开始计数),可以指定一个或多个维度(使用数组)。通常情况下,下面各种信息不需要所有的都写,按需写即可。
下面是series.encode支持的属性:
// 在任何坐标系和系列中,都支持:
encode: {
// 使用 “名为 product 的维度” 和 “名为 score 的维度” 的值在 tooltip 中显示
tooltip: ['product', 'score']
// 使用 “维度 1” 和 “维度 3” 的维度名连起来作为系列名。(有时候名字比较长,这可以避免在 series.name 重复输入这些名字)
seriesName: [1, 3],
// 表示使用 “维度2” 中的值作为 id。这在使用 setOption 动态更新数据时有用处,可以使新老数据用 id 对应起来,从而能够产生合适的数据更新动画。
itemId: 2,
// 指定数据项的名称使用 “维度3” 在饼图等图表中有用,可以使这个名字显示在图例(legend)中。
itemName: 3
}
// 直角坐标系(grid/cartesian)特有的属性:
encode: {
// 把 “维度1”、“维度5”、“名为 score 的维度” 映射到 X 轴:
x: [1, 5, 'score'],
// 把“维度0”映射到 Y 轴。
y: 0
}
// 单轴(singleAxis)特有的属性:
encode: {
single: 3
}
// 极坐标系(polar)特有的属性:
encode: {
radius: 3,
angle: 2
}
// 地理坐标系(geo)特有的属性:
encode: {
lng: 3,
lat: 2
}
// 对于一些没有坐标系的图表,例如饼图、漏斗图等,可以是:
encode: {
value: 3
}
视觉通道(颜色、尺寸等)的映射
我们可以使用visualMap组件进行视觉通道的映射。详见visualMap文档的介绍。
默认的 encode
值得一提的是,当series.encode并没有指定时,ECharts 针对最常见直角坐标系中的图表(折线图、柱状图、散点图、K线图等)、饼图、漏斗图,会采用一些默认的映射规则。默认的映射规则比较简单,大体是:
- 在坐标系中(如直角坐标系、极坐标系等)
- 如果有类目轴(axis.type 为 ‘category’),则将第一列(行)映射到这个轴上,后续每一列(行)对应一个系列。
- 如果没有类目轴,假如坐标系有两个轴(例如直角坐标系的 X Y 轴),则每两列对应一个系列,这两列分别映射到这两个轴上。
- 如果没有坐标系(如饼图)
- 取第一列(行)为名字,第二列(行)为数值(如果只有一列,则取第一列为数值)。
默认的规则不能满足要求时,就可以自己来配置encode,也并不复杂。
几个常见的 series.encode 设置方式举例
问:如何把第三列映射为气泡图的点的大小?
答:
var option = {
dataset: {
source: [
[12, 323, 11.2],
[23, 167, 8.3],
[81, 284, 12],
[91, 413, 4.1],
[13, 287, 13.5]
]
},
visualMap: {
show: false,
dimension: 2, // 指向第三列(列序号从 0 开始记,所以设置为 2)。
min: 2, // 需要给出数值范围,最小数值。
max: 15, // 需要给出数值范围,最大数值。
inRange: {
// 气泡尺寸:5 像素到 60 像素。
symbolSize: [5, 60]
}
},
xAxis: {},
yAxis: {},
series: {
type: 'scatter'
}
};
数据的各种格式
// 1.二维数组
dataset: {
source: [
['product', '2015', '2016', '2017'],
['Matcha Latte', 43.3, 85.8, 93.7],
['Milk Tea', 83.1, 73.4, 55.1],
['Cheese Cocoa', 86.4, 65.2, 82.5],
['Walnut Brownie', 72.4, 53.9, 39.1]
]
}
// 2.按行的 key-value 形式(对象数组),这是个比较常见的格式
dataset: {
// 用 dimensions 指定了维度的顺序。直角坐标系中,
// 默认把第一个维度映射到 X 轴上,第二个维度映射到 Y 轴上。
// 如果不指定 dimensions,也可以通过指定 series.encode
dimensions: ['product', '2015', '2016', '2017'],
source: [
{product: 'Matcha Latte', '2015': 43.3, '2016': 85.8, '2017': 93.7},
{product: 'Milk Tea', '2015': 83.1, '2016': 73.4, '2017': 55.1},
{product: 'Cheese Cocoa', '2015': 86.4, '2016': 65.2, '2017': 82.5},
{product: 'Walnut Brownie', '2015': 72.4, '2016': 53.9, '2017': 39.1}
]
}
// 3.按列的 key-value 形式
dataset: {
source: {
'product': ['Matcha Latte', 'Milk Tea', 'Cheese Cocoa', 'Walnut Brownie'],
'count': [823, 235, 1042, 988],
'score': [95.8, 81.4, 91.2, 76.9]
}
}
多个 dataset 以及如何引用他们
可以同时定义多个 dataset。系列可以通过series.datasetIndex来指定引用哪个 dataset。例如:
var option = {
dataset: [{
// 序号为 0 的 dataset。
source: [...],
}, {
// 序号为 1 的 dataset。
source: [...]
}, {
// 序号为 2 的 dataset。
source: [...]
}],
series: [{
// 使用序号为 2 的 dataset。
datasetIndex: 2
}, {
// 使用序号为 1 的 dataset。
datasetIndex: 1
}]
}
ECharts 3 的数据设置方式(series.data)仍正常使用
series.data也是种会一直存在的重要设置方式。一些特殊的非 table 格式的图表,如treemap、graph、lines等,现在仍不支持在 dataset 中设置,仍然需要使用series.data。另外,对于巨大数据量的渲染(如百万以上的数据量),需要使用appendData进行增量加载,这种情况不支持使用dataset。
数据转换器( data transform )
其他
目前并非所有图表都支持 dataset。支持 dataset 的图表有:line、bar、pie、scatter、effectScatter、parallel、candlestick、map、funnel、custom。 后续会有更多的图表进行支持。