动态规划是什么?解决动态规划问题有什么技巧?如何学习动态规划?
刷题刷多了就会发现,算法技巧就那几个套路,我们后续的动态规划系列章节,都在使用本文的解题框架思维,如果你心里有数,就会轻松很多。所以本文放在第一章,来扒一扒动态规划的裤子,形成一套解决这类问题的思维框架,希望能够成为解决动态规划问题的一部指导方针。本文就来讲解该算法的基本套路框架,下面上干货。
首先,动态规划问题的一般形式就是求最值。动态规划其实是运筹学的一种最优化方法,只不过在计算机问题上应用比较多,比如说让你求最长递增子序列呀,最小编辑距离呀等等。
既然是要求最值,核心问题是什么呢?求解动态规划的核心问题是穷举。因为要求最值,肯定要把所有可行的答案穷举出来,然后在其中找最值呗。
动态规划这么简单,就是穷举就完事了?我看到的动态规划问题都很难啊!
首先,动态规划的穷举有点特别,因为这类问题存在「重叠子问题」,如果暴力穷举的话效率会极其低下,所以需要「备忘录」或者「DP table」来优化穷举过程,避免不必要的计算。
而且,动态规划问题一定会具备「最优子结构」,才能通过子问题的最值得到原问题的最值。
另外,虽然动态规划的核心思想就是穷举求最值,但是问题可以千变万化,穷举所有可行解其实并不是一件容易的事,只有列出正确的「状态转移方程」,才能正确地穷举。
以上提到的重叠子问题、最优子结构、状态转移方程就是动态规划三要素。具体什么意思等会会举例详解,但是在实际的算法问题中,写出状态转移方程是最困难的,这也就是为什么很多朋友觉得动态规划问题困难的原因,我来提供我研究出来的一个思维框架,辅助你思考状态转移方程:
明确 base case -> 明确「状态」-> 明确「选择」 -> 定义 dp 数组/函数的含义
按上面的套路走,最后的结果就可以套这个框架:

  1. # 初始化 base case
  2. dp[0][0][...] = base
  3. # 进行状态转移
  4. for 状态1 in 状态1的所有取值:
  5. for 状态2 in 状态2的所有取值:
  6. for ...
  7. dp[状态1][状态2][...] = 求最值(选择1,选择2...)

509. 斐波那契数

难度简单290
斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n > 1
给你 n ,请计算 F(n) 。

暴力破解法

  1. class Solution {
  2. public int fib(int n) {
  3. if(n==0){
  4. return 0;
  5. }
  6. if(n==1||n==2){
  7. return 1;
  8. }
  9. return fib(n-1)+fib(n-2);
  10. }
  11. }

image.png
解析
image.png
这个递归树怎么理解?就是说想要计算原问题 f(20),我就得先计算出子问题 f(19) 和 f(18),然后要计算 f(19),我就要先算出子问题 f(18) 和 f(17),以此类推。最后遇到 f(1) 或者 f(2) 的时候,结果已知,就能直接返回结果,递归树不再向下生长了。
观察递归树,很明显发现了算法低效的原因:存在大量重复计算,比如 f(18) 被计算了两次,而且你可以看到,以 f(18) 为根的这个递归树体量巨大,多算一遍,会耗费巨大的时间。更何况,还不止 f(18) 这一个节点被重复计算,所以这个算法及其低效。
这就是动态规划问题的第一个性质:重叠子问题。下面,我们想办法解决这个问题。

使用备忘录:

  1. class Solution {
  2. public int fib(int n) {
  3. //备忘录全初始化为0
  4. int []memo=new int [n+1];
  5. //进行带备忘录的递归
  6. return build(memo,n);
  7. }
  8. public int build(int[]memo,int n){
  9. //base case
  10. if(n==0||n==1){
  11. return n;
  12. }
  13. //已经计算过,不用再次计算了
  14. if(memo[n]!=0){
  15. return memo[n];
  16. }
  17. memo[n]=build(memo,n-1)+build(memo,n-2);
  18. return memo[n];
  19. }
  20. }

image.png
现在,画出递归树,你就知道「备忘录」到底做了什么。
image.png

实际上,带「备忘录」的递归算法,把一棵存在巨量冗余的递归树通过「剪枝」,改造成了一幅不存在冗余的递归图,极大减少了子问题(即递归图中节点)的个数。

image.png
至此,带备忘录的递归解法的效率已经和迭代的动态规划解法一样了。实际上,这种解法和迭代的动态规划已经差不多了,只不过这种方法叫做「自顶向下」,动态规划叫做「自底向上」。
dp 数组的迭代解法

  1. class Solution {
  2. public int fib(int n) {
  3. if(n==0){
  4. return 0;
  5. }
  6. int []dp =new int [n+1];
  7. //base case
  8. dp[0]=0;
  9. dp[1]=1;
  10. //状态转移
  11. for (int i=2;i<=n;i++){
  12. dp[i]=dp[i-1]+dp[i-2];
  13. }
  14. return dp[n];
  15. }
  16. }

image.png
有了上一步「备忘录」的启发,我们可以把这个「备忘录」独立出来成为一张表,就叫做 DP table 吧,在这张表上完成「自底向上」的推算岂不美哉!
image.png
这里,引出「状态转移方程」这个名词,实际上就是描述问题结构的数学形式:
image.png

为啥叫「状态转移方程」?其实就是为了听起来高端。你把 f(n) 想做一个状态 n,这个状态 n 是由状态 n - 1 和状态 n - 2 相加转移而来,这就叫状态转移,仅此而已。

优化空间复杂度
根据斐波那契数列的状态转移方程,当前状态只和之前的两个状态有关,其实并不需要那么长的一个 DP table 来存储所有的状态,只要想办法存储之前的两个状态就行了。所以,可以进一步优化,把空间复杂度降为 O(1):

  1. class Solution {
  2. public int fib(int n) {
  3. if(n==0){
  4. return 0;
  5. }
  6. int pre=1;
  7. int cur=1;
  8. //状态转移
  9. for (int i=3;i<=n;i++){
  10. int sum=cur+pre;
  11. pre=cur;
  12. cur=sum;
  13. }
  14. return cur;
  15. }
  16. }

image.png
这个技巧就是所谓的「状态压缩」,如果我们发现每次状态转移只需要 DP table 中的一部分,那么可以尝试用状态压缩来缩小 DP table 的大小,只记录必要的数据,上述例子就相当于把DP table 的大小从 n 缩小到 2。后续的动态规划章节中我们还会看到这样的例子,一般来说是把一个二维的 DP table 压缩成一维,即把空间复杂度从 O(n^2) 压缩到 O(n)。
有人会问,动态规划的另一个重要特性「最优子结构」,怎么没有涉及?下面会涉及。斐波那契数列的例子严格来说不算动态规划,因为没有涉及求最值,以上旨在说明重叠子问题的消除方法,演示得到最优解法逐步求精的过程。下面,看第二个例子,凑零钱问题。