Java 创建线程对象有两种方法:
- 继承 Thread 类创建线程对象
- 实现 Runnable 接口类创建线程对象
注意:
在java中,每次程序运行至少启动2个线程。一个是main线程,一个是垃圾收集线程。因为每当使用java命令执行一个类的时候,实际上都会启动一个jvm,每一个jvm实际上就是在操作系统中启动了一个进程。
线程的状态和优先级
线程优先级1 到 10 ,其中 1 是最低优先级,10 是最高优先级。
状态
- new(新建)
- runnnable(可运行)
- blocked(阻塞)
- waiting(等待)
- time waiting (定时等待)
- terminated(终止)
状态转换
在并发编程中,我们需要处理两个关键问题:线程之间如何通信及线程之间如何同步。通信是指线程之间以何种机制来交换信息。在命令式编程中,线程之间的通信机制有两种:共享内存和消息传递。
在共享内存的并发模型里,线程之间共享程序的公共状态,线程之间通过写-读内存中的公共状态来隐式进行通信。在消息传递的并发模型里,线程之间没有公共状态,线程之间必须通过明确的发送消息来显式进行通信。
Java内存模型的抽象
Java的并发采用的是共享内存模型,Java线程之间的通信总是隐式进行,整个通信过程对程序员完全透明。
Java线程之间的通信由Java内存模型(本文简称为JMM)控制,JMM决定一个线程对共享变量的写入何时对另一个线程可见。从抽象的角度来看,JMM定义了线程和主内存之间的抽象关系:线程之间的共享变量存储在主内存(main memory)中,每个线程都有一个私有的本地内存(local memory),本地内存中存储了该线程以读/写共享变量的副本。本地内存是JMM的一个抽象概念,并不真实存在。它涵盖了缓存,写缓冲区,寄存器以及其他的硬件和编译器优化。
重排序
在执行程序时为了提高性能,编译器和处理器常常会对指令做重排序。重排序分三种类型:
- 编译器优化的重排序。编译器在不改变单线程程序语义的前提下,可以重新安排语句的执行顺序。
- 指令级并行的重排序。现代处理器采用了指令级并行技术(Instruction-Level Parallelism, ILP)来将多条指令重叠执行。如果不存在数据依赖性,处理器可以改变语句对应机器指令的执行顺序。
- 内存系统的重排序。由于处理器使用缓存和读/写缓冲区,这使得加载和存储操作看上去可能是在乱序执行。
上述的1属于编译器重排序,2和3属于处理器重排序。这些重排序都可能会导致多线程程序出现内存可见性问题。对于编译器,JMM的编译器重排序规则会禁止特定类型的编译器重排序(不是所有的编译器重排序都要禁止)。对于处理器重排序,JMM的处理器重排序规则会要求java编译器在生成指令序列时,插入特定类型的内存屏障(memory barriers,intel称之为memory fence)指令,通过内存屏障指令来禁止特定类型的处理器重排序(不是所有的处理器重排序都要禁止)。
JMM属于语言级的内存模型,它确保在不同的编译器和不同的处理器平台之上,通过禁止特定类型的编译器重排序和处理器重排序,为程序员提供一致的内存可见性保证。
happens-before
如果一个操作执行的结果需要对另一个操作可见,那么这两个操作之间必须存在happens-before关系。这里提到的两个操作既可以是在一个线程之内,也可以是在不同线程之间。 与程序员密切相关的happens-before规则如下:
- 程序顺序规则:一个线程中的每个操作,happens- before 于该线程中的任意后续操作。
- 监视器锁规则:对一个监视器锁的解锁,happens- before 于随后对这个监视器锁的加锁。
- volatile变量规则:对一个volatile域的写,happens- before 于任意后续对这个volatile域的读。
- 传递性:如果A happens- before B,且B happens- before C,那么A happens- before C。
注意,两个操作之间具有happens-before关系,并不意味着前一个操作必须要在后一个操作之前执行!happens-before仅仅要求前一个操作(执行的结果)对后一个操作可见,且前一个操作按顺序排在第二个操作之前(the first is visible to and ordered before the second)。
as-if-serial语义
as-if-serial语义的意思指:不管怎么重排序(编译器和处理器为了提高并行度),(单线程)程序的执行结果不能被改变。编译器,runtime 和处理器都必须遵守as-if-serial语义。
为了遵守as-if-serial语义,编译器和处理器不会对存在数据依赖关系的操作做重排序,因为这种重排序会改变执行结果。但是,如果操作之间不存在数据依赖关系,这些操作可能被编译器和处理器重排序。
数据依赖分下列三种类型:
as-if-serial语义把单线程程序保护了起来,遵守as-if-serial语义的编译器,runtime 和处理器共同为编写单线程程序的程序员创建了一个幻觉:单线程程序是按程序的顺序来执行的。
如果A happens- before B,JMM并不要求A一定要在B之前执行。JMM仅仅要求前一个操作(执行的结果)对后一个操作可见,且前一个操作按顺序排在第二个操作之前。这里操作A的执行结果不需要对操作B可见;而且重排序操作A和操作B后的执行结果,与操作A和操作B按happens- before顺序执行的结果一致。在这种情况下,JMM会认为这种重排序并不非法(not illegal),JMM允许这种重排序。
在单线程程序中,对存在控制依赖的操作重排序,不会改变执行结果(这也是as-if-serial语义允许对存在控制依赖的操作做重排序的原因);但在多线程程序中,对存在控制依赖的操作重排序,可能会改变程序的执行结果。
顺序一致性内存模型有两大特性:
- 一个线程中的所有操作必须按照程序的顺序来执行。
- (不管程序是否同步)所有线程都只能看到一个单一的操作执行顺序。在顺序一致性内存模型中,每个操作都必须原子执行且立刻对所有线程可见。
Votile关键字
换句话说,不仅是并发执行会导致问题,而且在一些优化操作(比如指令重排序)进行之后也会导致代码执行结果和源代码中的逻辑有所出入。由于编译器和运行时技术的日趋成熟以及多处理器的逐渐普及,这种现象就变得越来越普遍。
取而代之,Java内存模型中仅仅定义了线程和内存之间那种抽象的关系。众所周知,每个线程都拥有自己的工作存储单元(缓存和寄存器的抽象)来存储线程当前使用的变量的值。Java内存模型仅仅保证了代码指令与变量操作的有序性,大多数规则都只是指出什么时候变量值应该在内存和线程工作内存之间传输。这些规则主要是为了解决如下三个相互牵连的问题:
- 原子性:哪些指令必须是不可分割的。在Java内存模型中,这些规则需声明仅适用于-—实例变量和静态变量,也包括数组元素,但不包括方法中的局部变量-—的内存单元的简单读写操作。
- 可见性:在哪些情况下,一个线程执行的结果对另一个线程是可见的。这里需要关心的结果有,写入的字段以及读取这个字段所看到的值。
- 有序性:在什么情况下,某个线程的操作结果对其它线程来看是无序的。最主要的乱序执行问题主要表现在读写操作和赋值语句的相互执行顺序上。
原子性
除了long型字段和double型字段外,java内存模型确保访问任意类型字段所对应的内存单元都是原子的。这包括引用其它对象的引用类型的字段。此外,volatile long 和volatile double也具有原子性 。
当在一个表达式中使用一个non-long或者non-double型字段时,原子性可以确保你将获得这个字段的初始值或者某个线程对这个字段写入之后的值;但不会是两个或更多线程在同一时间对这个字段写入之后产生混乱的结果值。
可见性
一个写线程释放一个锁之后,另一个读线程随后获取了同一个锁。本质上,线程释放锁时会将强制刷新工作内存中的脏数据到主内存中,获取一个锁将强制线程装载(或重新装载)字段的值。锁提供对一个同步方法或块的互斥性执行,线程执行获取锁和释放锁时,所有对字段的访问的内存效果都是已定义的。
同步的第二个特性可以视为一种机制:一个线程在运行已同步方法时,它将发送和/或接收其他线程在同步方法中对变量所做的修改。从这一点来说,使用锁和发送消息仅仅是语法不同而已。
不管怎样,线程之间的可见性并不总是失效(指线程即使没有使用同步,仍然有可能读取到字段的最新值),内存模型仅仅是允许这种失效发生而已。因此,即使多个线程之间没有使用同步,也不保证一定会发生内存可见性问题(指线程读取到过期的值),java内存模型仅仅是允许内存可见性问题发生而已。
有序性
有序性规则表现在以下两种场景: 线程内和线程间
- 从某个线程的角度看方法的执行,指令会按照一种叫“串行”(as-if-serial)的方式执行,此种方式已经应用于顺序编程语言。
- 这个线程“观察”到其他线程并发地执行非同步的代码时,任何代码都有可能交叉执行。唯一起作用的约束是:对于同步方法,同步块以及volatile字段的操作仍维持相对有序。
volatile关键字详解:在JMM中volatile的内存语义是锁
class VolatileFeaturesExample {
volatile long vl = 0L; // 使用volatile声明64位的long型变量
public void set(long l) {
vl = l; // 单个volatile变量的写
}
public void getAndIncrement() {
vl++; // 复合(多个)volatile变量的读/写
}
public long get() {
return vl; // 单个volatile变量的读
}
}
假设有多个线程分别调用上面程序的三个方法,这个程序在语意上和下面程序等价:
class VolatileFeaturesExample {
long vl = 0L; // 64位的long型普通变量
public synchronized void set(long l) { //对单个的普通 变量的写用同一个监视器同步
vl = l;
}
public void getAndIncrement () { //普通方法调用
long temp = get(); //调用已同步的读方法
temp += 1L; //普通写操作
set(temp); //调用已同步的写方法
}
public synchronized long get() {
//对单个的普通变量的读用同一个监视器同步
return vl;
}
}
简而言之,volatile变量自身具有下列特性:监视器锁的语义决定了临界区代码的执行具有原子性。这意味着即使是64位的long型和double型变量,只要它是volatile变量,对该变量的读写就将具有原子性。如果是多个volatile操作或类似于volatile++这种复合操作,这些操作整体上不具有原子性。
- 可见性。对一个volatile变量的读,总是能看到(任意线程)对这个volatile变量最后的写入。
原子性:对任意单个volatile变量的读/写具有原子性,但类似于volatile++这种复合操作不具有原子性。
volatile写-读的内存语义
volatile写的内存语义如下:
当写一个volatile变量时,JMM会把该线程对应的本地内存中的共享变量刷新到主内存。
volatile读的内存语义如下:
- 当读一个volatile变量时,JMM会把该线程对应的本地内存置为无效。线程接下来将从主内存中读取共享变量。
3 处理器如何实现原子操作
3.1 处理器自动保证基本内存操作的原子性
处理器保证从系统内存当中读取或者写入一个字节是原子的,意思是当一个处理器读取一个字节时,其他处理器不能访问这个字节的内存地址3.2 使用总线锁保证原子性
第一个机制是通过总线锁保证原子性。3.3 使用缓存锁保证原子性
第二个机制是通过缓存锁定保证原子性。在同一时刻我们只需保证对某个内存地址的操作是原子性即可,但总线锁定把CPU和内存之间通信锁住了,这使得锁定期间,其他处理器不能操作其他内存地址的数据,所以总线锁定的开销比较大,最近的处理器在某些场合下使用缓存锁定代替总线锁定来进行优化。
4 JAVA如何实现原子操作
4.1 使用循环CAS实现原子操作
在Java并发包中有一些并发框架也使用了自旋CAS的方式来实现原子操作,比如LinkedTransferQueue类的Xfer方法。CAS虽然很高效的解决原子操作,但是CAS仍然存在三大问题。ABA问题,循环时间长开销大和只能保证一个共享变量的原子操作。
- ABA问题。因为CAS需要在操作值的时候检查下值有没有发生变化,如果没有发生变化则更新,但是如果一个值原来是A,变成了B,又变成了A,那么使用CAS进行检查时会发现它的值没有发生变化,但是实际上却变化了。ABA问题的解决思路就是使用版本号。在变量前面追加上版本号,每次变量更新的时候把版本号加一,那么A-B-A 就会变成1A-2B-3A。
从Java1.5开始JDK的atomic包里提供了一个类AtomicStampedReference来解决ABA问题。这个类的compareAndSet方法作用是首先检查当前引用是否等于预期引用,并且当前标志是否等于预期标志,如果全部相等,则以原子方式将该引用和该标志的值设置为给定的更新值。
- 环时间长开销大。自旋CAS如果长时间不成功,会给CPU带来非常大的执行开销。如果JVM能支持处理器提供的pause指令那么效率会有一定的提升,pause指令有两个作用,第一它可以延迟流水线执行指令(de-pipeline),使CPU不会消耗过多的执行资源,延迟的时间取决于具体实现的版本,在一些处理器上延迟时间是零。第二它可以避免在退出循环的时候因内存顺序冲突(memory order violation)而引起CPU流水线被清空(CPU pipeline flush),从而提高CPU的执行效率。
- 只能保证一个共享变量的原子操作。当对一个共享变量执行操作时,我们可以使用循环CAS的方式来保证原子操作,但是对多个共享变量操作时,循环CAS就无法保证操作的原子性,这个时候就可以用锁,或者有一个取巧的办法,就是把多个共享变量合并成一个共享变量来操作。比如有两个共享变量i=2,j=a,合并一下ij=2a,然后用CAS来操作ij。从Java1.5开始JDK提供了AtomicReference类来保证引用对象之间的原子性,你可以把多个变量放在一个对象里来进行CAS操作。
Java中的锁机制及Lock类
锁的释放-获取建立的happens before 关系
锁是java并发编程中最重要的同步机制。锁除了让临界区互斥执行外,还可以让释放锁的线程向获取同一个锁的线程发送消息。
下面对锁释放和锁获取的内存语义做个总结:
- 线程A释放一个锁,实质上是线程A向接下来将要获取这个锁的某个线程发出了(线程A对共享变量所做修改的)消息。
- 线程B获取一个锁,实质上是线程B接收了之前某个线程发出的(在释放这个锁之前对共享变量所做修改的)消息。
- 线程A释放锁,随后线程B获取这个锁,这个过程实质上是线程A通过主内存向线程B发送消息。
现在对公平锁和非公平锁的内存语义做个总结:
- 公平锁和非公平锁释放时,最后都要写一个volatile变量state。
- 公平锁获取时,首先会去读这个volatile变量。
- 非公平锁获取时,首先会用CAS更新这个volatile变量,这个操作同时具有volatile读和volatile写的内存语义。
从本文对ReentrantLock的分析可以看出,锁释放-获取的内存语义的实现至少有下面两种方式:
- 利用volatile变量的写-读所具有的内存语义。
- 利用CAS所附带的volatile读和volatile写的内存语义。
synchronized实现原理
ynchronized可以保证方法或者代码块在运行时,同一时刻只有一个方法可以进入到临界区,同时它还可以保证共享变量的内存可见性。
Java中每一个对象都可以作为锁,这是synchronized实现同步的基础:
- 普通同步方法,锁是当前实例对象;
- 静态同步方法,锁是当前类的class对象;
- 同步方法块,锁是括号里面的对象。
当一个线程访问同步代码块时,它首先是需要得到锁才能执行同步代码,当退出或者抛出异常时必须要释放锁,那么它是如何来实现这个机制的呢?
利用Javap工具查看生成的class文件信息来分析Synchronize的实现:
从上面可以看出,同步代码块是使用monitorenter和monitorexit指令实现的,同步方法(在这看不出来需要看JVM底层实现)依靠的是方法修饰符上的ACCSYNCHRONIZED实现。
同步代码块:
monitorenter指令插入到同步代码块的开始位置,monitorexit指令插入到同步代码块的结束位置,JVM需要保证每一个monitorenter都有一个monitorexit与之相对应。任何对象都有一个monitor与之相关联,当且一个monitor被持有之后,他将处于锁定状态。线程执行到monitorenter指令时,将会尝试获取对象所对应的monitor所有权,即尝试获取对象的锁;
同步方法
synchronized方法则会被翻译成普通的方法调用和返回指令如:invokevirtual、areturn指令,在VM字节码层面并没有任何特别的指令来实现被synchronized修饰的方法,而是在Class文件的方法表中将该方法的accessflags字段中的synchronized标志位置1,表示该方法是同步方法并使用调用该方法的对象或该方法所属的Class在JVM的内部对象表示Klass做为锁对象。
2、Java对象头
synchronized用的锁是存在Java对象头里的,那么什么是Java对象头呢?
Hotspot虚拟机的对象头主要包括两部分数据:Mark Word(标记字段)、Klass Pointer(类型指针)。其中Klass Point是是对象指向它的类元数据的指针,虚拟机通过这个指针来确定这个对象是哪个类的实例,Mark Word用于存储对象自身的运行时数据,它是实现轻量级锁和偏向锁的关键。
所以下面将重点阐述。
- Mark WordMark Word用于存储对象自身的运行时数据,如哈希码(HashCode)、GC分代年龄、锁状态标志、线程持有的锁、偏向线程 ID、偏向时间戳等等。Java对象头一般占有两个机器码(在32位虚拟机中,1个机器码等于4字节,也就是32bit),但是如果对象是数组类型,则需要三个机器码,因为JVM虚拟机可以通过Java对象的元数据信息确定Java对象的大小,但是无法从数组的元数据来确认数组的大小,所以用一块来记录数组长度。
4、锁优化
JDK1.6对锁的实现引入了大量的优化,如自旋锁、适应性自旋锁、锁消除、锁粗化、偏向锁、轻量级锁等技术来减少锁操作的开销。
锁主要存在四中状态,依次是:无锁状态、偏向锁状态、轻量级锁状态、重量级锁状态。他们会随着竞争的激烈而逐渐升级。注意锁可以升级不可降级,这种策略是为了提高获得锁和释放锁的效率。
何谓自旋锁?
所谓自旋锁,就是让该线程等待一段时间,不会被立即挂起(就是不让前来获取该锁(已被占用)的线程立即阻塞),看持有锁的线程是否会很快释放锁。
所以说,自旋等待的时间(自旋的次数)必须要有一个限度,如果自旋超过了定义的时间仍然没有获取到锁,则应该被挂起。自旋锁在JDK 1.4.2中引入,默认关闭,但是可以使用-XX:+UseSpinning开开启,在JDK1.6中默认开启。同时自旋的默认次数为10次,可以通过参数-XX:PreBlockSpin来调整。
JDK 1.6引入了更加聪明的自旋锁,即自适应自旋锁。所谓自适应就意味着自旋的次数不再是固定的,它是由前一次在同一个锁上的自旋时间及锁的拥有者的状态来决定。
线程如果自旋成功了,那么下次自旋的次数会更加多,因为虚拟机认为既然上次成功了,那么此次自旋也很有可能会再次成功,那么它就会允许自旋等待持续的次数更多。反之,如果对于某个锁,很少有自旋能够成功的,那么在以后要或者这个锁的时候自旋的次数会减少甚至省略掉自旋过程,以免浪费处理器资源。有了自适应自旋锁,随着程序运行和性能监控信息的不断完善,虚拟机对程序锁的状况预测会越来越准确,虚拟机会变得越来越聪明。
锁消除
为了保证数据的完整性,我们在进行操作时需要对这部分操作进行同步控制,但是在有些情况下,JVM检测到不可能存在共享数据竞争,这是JVM会对这些同步锁进行锁消除。锁消除的依据是逃逸分析的数据支持。
锁粗化
就是将多个连续的加锁、解锁操作连接在一起,扩展成一个范围更大的锁。
如上面实例:vector每次add的时候都需要加锁操作,JVM检测到对同一个对象(vector)连续加锁、解锁操作,会合并一个更大范围的加锁、解锁操作,即加锁解锁操作会移到for循环之外。
轻量级锁
引入轻量级锁的主要目的是在多没有多线程竞争的前提下,减少传统的重量级锁使用操作系统互斥量产生的性能消耗。
当关闭偏向锁功能或者多个线程竞争偏向锁导致偏向锁升级为轻量级锁,则会尝试获取轻量级锁,其步骤如下:
- 判断当前对象是否处于无锁状态(hashcode、0、01),若是,则JVM首先将在当前线程的栈帧中建立一个名为锁记录(Lock Record)的空间,用于存储锁对象目前的Mark Word的拷贝(官方把这份拷贝加了一个Displaced前缀,即Displaced Mark Word);否则执行步骤(3);
- JVM利用CAS操作尝试将对象的Mark Word更新为指向Lock Record的指正,如果成功表示竞争到锁,则将锁标志位变成00(表示此对象处于轻量级锁状态),执行同步操作;如果失败则执行步骤(3);
- 判断当前对象的Mark Word是否指向当前线程的栈帧,如果是则表示当前线程已经持有当前对象的锁,则直接执行同步代码块;否则只能说明该锁对象已经被其他线程抢占了,这时轻量级锁需要膨胀为重量级锁,锁标志位变成10,后面等待的线程将会进入阻塞状态;
偏向锁
引入偏向锁主要目的是:为了在无多线程竞争的情况下尽量减少不必要的轻量级锁执行路径。上面提到了轻量级锁的加锁解锁操作是需要依赖多次CAS原子指令的。那么偏向锁是如何来减少不必要的CAS操作呢?我们可以查看Mark work的结构就明白了。
只需要检查是否为偏向锁、锁标识为以及ThreadID即可,处理流程如下:**获取锁。**
- 检测Mark Word是否为可偏向状态,即是否为偏向锁1,锁标识位为01;
- 若为可偏向状态,则测试线程ID是否为当前线程ID,如果是,则执行步骤(5),否则执行步骤(3);
- 如果线程ID不为当前线程ID,则通过CAS操作竞争锁,竞争成功,则将Mark Word的线程ID替换为当前线程ID,否则执行线程(4);
- 通过CAS竞争锁失败,证明当前存在多线程竞争情况,当到达全局安全点,获得偏向锁的线程被挂起,偏向锁升级为轻量级锁,然后被阻塞在安全点的线程继续往下执行同步代码块;
- 执行同步代码块。
释放锁偏向锁的释放采用了一种只有竞争才会释放锁的机制,线程是不会主动去释放偏向锁,需要等待其他线程来竞争。偏向锁的撤销需要等待全局安全点(这个时间点是上没有正在执行的代码)。
其步骤如下:
- 暂停拥有偏向锁的线程,判断锁对象石是否还处于被锁定状态;
- 撤销偏向苏,恢复到无锁状态(01)或者轻量级锁的状态。
关于final规则
与前面介绍的锁和volatile相比较,对final域的读和写更像是普通的变量访问。对于final域,编译器和处理器要遵守两个重排序规则:
- 在构造函数内对一个final域的写入,与随后把这个被构造对象的引用赋值给一个引用变量,这两个操作之间不能重排序。
- 初次读一个包含final域的对象的引用,与随后初次读这个final域,这两个操作之间不能重排序。