把它们放在一起

校验者: @片刻 翻译者: @X

模型管道化

我们已经知道一些模型可以做数据转换,一些模型可以用来预测变量。我们可以建立一个组合模型同时完成以上工作:

http://sklearn.apachecn.org/cn/0.19.0/_images/sphx_glr_plot_digits_pipe_001.png

  1. import numpy as np
  2. import matplotlib.pyplot as plt
  3. import pandas as pd
  4. from sklearn import datasets
  5. from sklearn.decomposition import PCA
  6. from sklearn.linear_model import SGDClassifier
  7. from sklearn.pipeline import Pipeline
  8. from sklearn.model_selection import GridSearchCV
  9. # Define a pipeline to search for the best combination of PCA truncation
  10. # and classifier regularization.
  11. logistic = SGDClassifier(loss='log', penalty='l2', early_stopping=True,
  12. max_iter=10000, tol=1e-5, random_state=0)
  13. pca = PCA()
  14. pipe = Pipeline(steps=[('pca', pca), ('logistic', logistic)])
  15. digits = datasets.load_digits()
  16. X_digits = digits.data
  17. y_digits = digits.target
  18. # Parameters of pipelines can be set using ‘__’ separated parameter names:
  19. param_grid = {
  20. 'pca__n_components': [5, 20, 30, 40, 50, 64],
  21. 'logistic__alpha': np.logspace(-4, 4, 5),
  22. }
  23. search = GridSearchCV(pipe, param_grid, iid=False, cv=5)
  24. search.fit(X_digits, y_digits)
  25. print("Best parameter (CV score=%0.3f):" % search.best_score_)
  26. print(search.best_params_)
  27. # Plot the PCA spectrum
  28. pca.fit(X_digits)
  29. fig, (ax0, ax1) = plt.subplots(nrows=2, sharex=True, figsize=(6, 6))
  30. ax0.plot(pca.explained_variance_ratio_, linewidth=2)
  31. ax0.set_ylabel('PCA explained variance')
  32. ax0.axvline(search.best_estimator_.named_steps['pca'].n_components,
  33. linestyle=':', label='n_components chosen')

用特征面进行人脸识别

该实例用到的数据集来自 LFW_(Labeled Faces in the Wild)。数据已经进行了初步预处理

http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz (233MB)

  1. """
  2. ===================================================
  3. Faces recognition example using eigenfaces and SVMs
  4. ===================================================
  5. The dataset used in this example is a preprocessed excerpt of the
  6. "Labeled Faces in the Wild", aka LFW_:
  7. http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz (233MB)
  8. .. _LFW: http://vis-www.cs.umass.edu/lfw/
  9. Expected results for the top 5 most represented people in the dataset:
  10. ================== ============ ======= ========== =======
  11. precision recall f1-score support
  12. ================== ============ ======= ========== =======
  13. Ariel Sharon 0.67 0.92 0.77 13
  14. Colin Powell 0.75 0.78 0.76 60
  15. Donald Rumsfeld 0.78 0.67 0.72 27
  16. George W Bush 0.86 0.86 0.86 146
  17. Gerhard Schroeder 0.76 0.76 0.76 25
  18. Hugo Chavez 0.67 0.67 0.67 15
  19. Tony Blair 0.81 0.69 0.75 36
  20. avg / total 0.80 0.80 0.80 322
  21. ================== ============ ======= ========== =======
  22. """
  23. from time import time
  24. import logging
  25. import matplotlib.pyplot as plt
  26. from sklearn.model_selection import train_test_split
  27. from sklearn.model_selection import GridSearchCV
  28. from sklearn.datasets import fetch_lfw_people
  29. from sklearn.metrics import classification_report
  30. from sklearn.metrics import confusion_matrix
  31. from sklearn.decomposition import PCA
  32. from sklearn.svm import SVC
  33. print(__doc__)
  34. # Display progress logs on stdout
  35. logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')
  36. # #############################################################################
  37. # Download the data, if not already on disk and load it as numpy arrays
  38. lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)
  39. # introspect the images arrays to find the shapes (for plotting)
  40. n_samples, h, w = lfw_people.images.shape
  41. # for machine learning we use the 2 data directly (as relative pixel
  42. # positions info is ignored by this model)
  43. X = lfw_people.data
  44. n_features = X.shape[1]
  45. # the label to predict is the id of the person
  46. y = lfw_people.target
  47. target_names = lfw_people.target_names
  48. n_classes = target_names.shape[0]
  49. print("Total dataset size:")
  50. print("n_samples: %d" % n_samples)
  51. print("n_features: %d" % n_features)
  52. print("n_classes: %d" % n_classes)
  53. # #############################################################################
  54. # Split into a training set and a test set using a stratified k fold
  55. # split into a training and testing set
  56. X_train, X_test, y_train, y_test = train_test_split(
  57. X, y, test_size=0.25, random_state=42)
  58. # #############################################################################
  59. # Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled
  60. # dataset): unsupervised feature extraction / dimensionality reduction
  61. n_components = 150
  62. print("Extracting the top %d eigenfaces from %d faces"
  63. % (n_components, X_train.shape[0]))
  64. t0 = time()
  65. pca = PCA(n_components=n_components, svd_solver='randomized',
  66. whiten=True).fit(X_train)
  67. print("done in %0.3fs" % (time() - t0))
  68. eigenfaces = pca.components_.reshape((n_components, h, w))
  69. print("Projecting the input data on the eigenfaces orthonormal basis")
  70. t0 = time()
  71. X_train_pca = pca.transform(X_train)
  72. X_test_pca = pca.transform(X_test)
  73. print("done in %0.3fs" % (time() - t0))
  74. # #############################################################################
  75. # Train a SVM classification model
  76. print("Fitting the classifier to the training set")
  77. t0 = time()
  78. param_grid = {'C': [1e3, 5e3, 1e4, 5e4, 1e5],
  79. 'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], }
  80. clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'),
  81. param_grid, cv=5, iid=False)
  82. clf = clf.fit(X_train_pca, y_train)
  83. print("done in %0.3fs" % (time() - t0))
  84. print("Best estimator found by grid search:")
  85. print(clf.best_estimator_)
  86. # #############################################################################
  87. # Quantitative evaluation of the model quality on the test set
  88. print("Predicting people's names on the test set")
  89. t0 = time()
  90. y_pred = clf.predict(X_test_pca)
  91. print("done in %0.3fs" % (time() - t0))
  92. print(classification_report(y_test, y_pred, target_names=target_names))
  93. print(confusion_matrix(y_test, y_pred, labels=range(n_classes)))
  94. # #############################################################################
  95. # Qualitative evaluation of the predictions using matplotlib
  96. def plot_gallery(images, titles, h, w, n_row=3, n_col=4):
  97. """Helper function to plot a gallery of portraits"""
  98. plt.figure(figsize=(1.8 * n_col, 2.4 * n_row))
  99. plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35)
  100. for i in range(n_row * n_col):
  101. plt.subplot(n_row, n_col, i + 1)
  102. plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray)
  103. plt.title(titles[i], size=12)
  104. plt.xticks(())
  105. plt.yticks(())
  106. # plot the result of the prediction on a portion of the test set
  107. def title(y_pred, y_test, target_names, i):
  108. pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1]
  109. true_name = target_names[y_test[i]].rsplit(' ', 1)[-1]
  110. return 'predicted: %s\ntrue: %s' % (pred_name, true_name)
  111. prediction_titles = [title(y_pred, y_test, target_names, i)
  112. for i in range(y_pred.shape[0])]
  113. plot_gallery(X_test, prediction_titles, h, w)
  114. # plot the gallery of the most significative eigenfaces
  115. eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])]
  116. plot_gallery(eigenfaces, eigenface_titles, h, w)
  117. plt.show()
prediction eigenfaces
Prediction Eigenfaces

数据集中前5名最有代表性样本的预期结果:

  1. precision recall f1-score support
  2. Gerhard_Schroeder 0.91 0.75 0.82 28
  3. Donald_Rumsfeld 0.84 0.82 0.83 33
  4. Tony_Blair 0.65 0.82 0.73 34
  5. Colin_Powell 0.78 0.88 0.83 58
  6. George_W_Bush 0.93 0.86 0.90 129
  7. avg / total 0.86 0.84 0.85 282

开放性问题: 股票市场结构

我们可以预测 Google 在特定时间段内的股价变动吗?

Learning a graph structure