什么是垃圾
内存中已经不再被使用到的空间就是垃圾
要进行垃圾回收,如何判断一个对象是否可以被回收?
引用计数法
Java中,引用和对象是有关联的。如果要操作对象则必须引用进行。
因此,简单的办法是通过引用计数来判断一个对象是否可以回收。简单的说,给对象中添加一个引用计数,每当有一个引用失效时,计数器值减1.
任何时刻计数器值为0的对象就是不可能再被利用的,那么这个对象就是可回收对象。
那么为什么主流的Java虚拟机里面都没有选择这种算法呢?主要的原因是它很难解决对象之间相互循环引用的问题。
枚举根节点做可达性分析(根搜索路径)
为了解决引用计数法的循环引用问题,Java使用了可达性分析的方法。
所谓“GC roots”或者tracing GC的“根集合”就是一组必须活跃的引用。
基本思路就是通过一系列名为“GC Roots”的对象作为起点,从这个被称为GC Roots的对象开始向下搜索,如果一个对象到GC Roots没有任何引用链相连时,则说明此对象不可用。即给定一个集合的引用作为根出发,通过引用关系遍历对象图,能被遍历到的(可达性的)对象就被判定为存活,没有被遍历到的就被判断为死亡。
case
Java中可以作为GC Roots的对象
- 虚拟机栈(栈帧中的局部变量区,也叫做局部变量表)中引用的对象。
- 方法区中的类静态属性引用的对象。
- 方法区中常量引用的对象
- 本地方法栈中JNI(Native方法)引用的对象。
标记清除
最基础的收集算法是“标记-清除”(Mark-Sweep)算法,如同它的名字一样,算法分为“标记”和“清除”两个阶段:
首先标记出所有需要回收的对象,在标记完成后统一回收所有被标记的对象。
它的主要不足有两个:
- 一个是效率问题,标记和清除两个过程的效率都不高;
- 另一个是空间问题,标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致以后在程序运行过程中需要分配较大对象时,无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作
复制
为甚么出现复制算法?
为了解决效率问题,一种称为“复制”(Copying)的收集算法出现了,它将可用内存按量划分为大小相等的两块,每次只使用其中的一块
当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。这样使得每次都是对整个半区进行内存回收,内存分配时也就不用考虑内存碎片等复杂情况,只要移动堆顶指针,按顺序分配内存即可,实现简单,运行高效。
现在的商业虚拟机都采用这种收集算法来回收新生代,研究表明,新生代中的对象 98%是“朝生夕死”的,所以并不需要按照 1:1 的比例来划分内存空间,而是将内存分为一块较大的 Eden 空间和两块较小的 Survivor 空间,每次使用 Eden 和其中一块 Survivor。 Survivor from 和Survivor to ,内存比例 8:1:1
标记整理
标记-整理
根据老年代的特点,有人提出了另外一种“标记-整理(Mark- Compact)算法,标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存
分代收集
一般把 Java 堆分为新生代和老年代,这样就可以根据各个年代的特点采用最适当的收集算法
在新生代中,每次垃圾收集时都发现有大批对象死去,只有少量存活,那就选用复制算法,标记整理只需要付出少量存活对象的复制成本就可以完成收集。而老年代中因为对象存活率高、没有额外空间对它进行分配担保,就必须使用“标记-清理”或者“标记一整理”算法来进行回收