根据加锁的范围,MySQL 里面的锁大致可以分成全局锁表级锁行锁三类。

1 全局锁

顾名思义,全局锁就是对整个数据库实例加锁。
MySQL 提供了一个加全局读锁的方法,命令是 Flush tables with read lock (FTWRL)

当你需要让整个库处于只读状态的时候,可以使用这个命令,之后其他线程的以下语句会被阻塞:
数据更新语句(数据的增删改,属于DML)、数据定义语句(包括建表、修改表结构等,属于DDL)和更新类事务的提交语句。

全局锁的典型使用场景是,做全库逻辑备份。也就是把整库每个表都 select 出来存成文本。
以前有一种做法,是通过 FTWRL 确保不会有其他线程对数据库做更新,然后对整个库做备份。注意,在备份过程中整个库完全处于只读状态。但是让整库都只读,听上去就很危险:

  • 如果你在主库上备份,那么在备份期间都不能执行更新,业务基本上就得停摆;
  • 如果你在从库上备份,那么备份期间从库不能执行主库同步过来的binlog,会导致主从延迟(一般从库负责读,和redis集群一样,主从延迟的话影响也比较大)。

看来加全局锁不太好。但是细想一下,备份为什么要加锁呢?我们来看一下不加锁会有什么问题。
假设你现在要维护“极客时间”的购买系统,关注的是用户账户余额表和用户课程表。现在发起一个逻辑备份。假设备份期间,有一个用户,他购买了一门课程,业务逻辑里就要扣掉他的余额,然后往已购课程里面加上一门课。如果时间顺序上是先备份账户余额表 (u_account),然后用户购买,然后备份用户课程表 (u_course),会怎么样呢?你可以看一下这个图:
image.png
可以看到,这个备份结果里,用户 A 的数据状态是“账户余额没扣,但是用户课程表里面已经多了一门课”。如果后面用这个备份来恢复数据的话,用户 A 就发现,自己赚了。
作为用户可别觉得这样可真好啊,你可以试想一下:如果备份表的顺序反过来,先备份用户课程表再备份账户余额表,又可能会出现什么结果?也就是说,不加锁的话,备份系统备份的得到的库不是一个逻辑时间点,这个视图是逻辑不一致的。

说到视图你肯定想起来了,我们在前面讲事务隔离的时候,其实是有一个方法能够拿到一致性视图的,对吧?是的,就是在可重复读隔离级别下开启一个事务。
官方自带的逻辑备份工具是 mysqldump。当 mysqldump 使用参数–single-transaction 的时候,导数据之前就会启动一个事务,来确保拿到一致性视图。而由于 MVCC 的支持,这个过程中数据是可以正常更新的。

通过启动一个Reaptable Read 的事务,这个事务在启动之后,读取的数据都是来自启动的时候产生的视图。 且因为是备份数据,不会有任何update操作(不会发生幻读),因此整个备份过程,看到的数据都是一致的,不会看到备份过程中其他事务提交的数据

你一定在疑惑,有了这个功能,为什么还需要 FTWRL 呢?一致性读是好,但前提是引擎要支持这个隔离级别。比如,对于 MyISAM 这种不支持事务的引擎,如果备份过程中有更新,总是只能取到最新的数据,那么就破坏了备份的一致性。这时,我们就需要使用 FTWRL 命令了。

所以,single-transaction 方法只适用于所有的表使用事务引擎的库。如果有的表使用了不支持事务的引擎,那么备份就只能通过 FTWRL 方法。这往往是 DBA 要求业务开发人员使用 InnoDB 替代 MyISAM 的原因之一

你也许会问,既然要全库只读,为什么不使用set global readonly=true 的方式呢?确实 readonly 方式也可以让全库进入只读状态,但我还是会建议你用 FTWRL 方式,主要有两个原因:

  • 一是,在有些系统中,readonly 的值会被用来做其他逻辑,比如用来判断一个库是主库还是备库。因此,修改 global 变量的方式影响面更大,我不建议你使用。
  • 二是,在异常处理机制上有差异。如果执行 FTWRL 命令之后由于客户端发生异常断开,那么 MySQL 会自动释放这个全局锁,整个库回到可以正常更新的状态。而将整个库设置为 readonly 之后,如果客户端发生异常,则数据库就会一直保持 readonly 状态,这样会导致整个库长时间处于不可写状态,风险较高。

业务的更新不只是增删改数据(DML),还有可能是加字段等修改表结构的操作(DDL)。
不论是哪种方法,一个库被全局锁上以后,你要对里面任何一个表做加字段操作,都是会被锁住的。但是,即使没有被全局锁住,加字段也不是就能一帆风顺的,因为你还会碰到接下来我们要介绍的表级锁。

2 表级锁

表锁

MySQL 里面表级别的锁有两种:一种是表锁,一种是元数据锁(meta data lock,MDL)

表锁的语法是 lock tables … read/write
与 FTWRL 类似,可以用 unlock tables 主动释放锁,也可以在客户端断开的时候自动释放

需要注意,lock tables 语法除了会限制别的线程的读写外,也限制了本线程接下来的操作对象
举个例子, 如果在某个线程 A 中执行 lock tables t1 read, t2 write; 这个语句,则其他线程写 t1、读写 t2 的语句都会被阻塞。同时,线程 A 在执行 unlock tables 之前,也只能执行读 t1、读写 t2 的操作,连写 t1 都不允许,自然也不能访问其他表。

在还没有出现更细粒度的锁的时候,表锁是最常用的处理并发的方式。而对于 InnoDB 这种支持行锁的引擎,一般不使用 lock tables 命令来控制并发,毕竟锁住整个表的影响面还是太大

表锁一般是在数据库引擎不支持行锁的时候才会被用到的
如果你发现你的应用程序里有 lock tables 这样的语句,你需要追查一下,比较可能的情况是:
要么是你的系统现在还在用 MyISAM 这类不支持事务的引擎,那要安排升级换引擎;
要么是你的引擎升级了,但是代码还没升级。我见过这样的情况,最后业务开发就是把 lock tables 和 unlock tables 改成 begin 和 commit,问题就解决了。

元数据锁

另一类表级的锁是 MDL(metadata lock)
MDL 不需要显式使用,在访问一个表的时候会被自动加上MDL 的作用是,保证读写的正确性
你可以想象一下,如果一个查询正在遍历一个表中的数据,而执行期间另一个线程对这个表结构做变更,删了一列,那么查询线程拿到的结果跟表结构对不上,肯定是不行的。

因此,在 MySQL 5.5 版本中引入了 MDL

  • MDL的主要作用是防止DDL和DML并发的冲突
  • 当对一个表做增删改查操作(DML)的时候,加 MDL 读锁
  • 当要对表做结构变更操作(DDL)的时候,加 MDL 写锁。
  • 读锁之间不互斥,因此你可以有多个线程同时对一张表增删改查。
  • 读写锁之间、写锁之间是互斥的,用来保证变更表结构操作的安全性。因此,如果有两个线程要同时给一个表加字段,其中一个要等另一个执行完才能开始执行。

虽然 MDL 锁是系统默认会加的,但却是你不能忽略的一个机制。比如下面这个例子:
给一个小表加个字段,导致整个库挂了。你肯定知道,给一个表加字段,或者修改字段,或者加索引,需要扫描全表的数据。在对大表操作的时候,你肯定会特别小心,以免对线上服务造成影响。而实际上,即使是小表,操作不慎也会出问题。
我们来看一下下面的操作序列,假设表 t 是一个小表。
image.png
我们可以看到 session A 先启动,这时候会对表 t 加一个 MDL 读锁。
由于 session B 需要的也是 MDL 读锁,因此可以正常执行。
之后 session C 会被 blocked,是因为 session A 的 MDL 读锁还没有释放,而 session C 需要 MDL 写锁,因此只能被阻塞。
如果只有 session C 自己被阻塞还没什么关系,但是之后所有要在表 t 上新申请 MDL 读锁的请求也会被 session C 阻塞。这是因为申请MDL锁的操作会形成一个队列,队列中写锁获取优先级高于读锁。一旦出现写锁等待,不但当前操作会被阻塞,同时还会阻塞后续该表的所有操作事务一旦申请到MDL锁后,直到事务执行完才会将锁释放。

前面我们说了,所有对表的增删改查操作都需要先申请 MDL 读锁,就都被锁住,等于这个表现在完全不可读写了。如果某个表上的查询语句频繁,而且客户端有重试机制,也就是说超时后会再起一个新 session 再请求的话,这个库的线程很快就会爆满。
你现在应该知道了,事务中的 MDL 锁,在语句执行开始时申请,但是语句结束后并不会马上释放,而会等到整个事务提交后再释放

基于上面的分析,我们来讨论一个问题,如何安全地给小表加字段?首先我们要解决长事务,事务不提交,就会一直占着 MDL 锁。在 MySQL 的 information_schema 库的 innodb_trx 表中,你可以查到当前执行中的事务。如果你要做 DDL 变更的表刚好有长事务在执行,要考虑先暂停 DDL,或者 kill 掉这个长事务。

长事务一是严重威胁并发性,二是导致回滚段不能回收长时间被占用空间

但考虑一下这个场景。如果你要变更的表是一个热点表,虽然数据量不大,但是上面的请求很频繁,而你不得不加个字段,你该怎么做呢?这时候 kill 可能未必管用,因为新的请求马上就来了。比较理想的机制是,在 alter table 语句里面设定等待时间,如果在这个指定的等待时间里面能够拿到 MDL 写锁最好,拿不到也不要阻塞后面的业务语句,先放弃。之后开发人员或者 DBA 再通过重试命令重复这个过程。

MariaDB 已经合并了 AliSQL 的这个功能,所以这两个开源分支目前都支持 DDL NOWAIT/WAIT n 这个语法。

这里可以看出涉及到多线程,锁相关的部分,不管是java还是mysql,解决的办法都差不多,即为了防止死锁或者长时间卡顿,通过加入超时时间的方法来解决。

  1. ALTER TABLE tbl_name NOWAIT add column ...
  2. ALTER TABLE tbl_name WAIT N add column ...

问题 备份一般都会在备库上执行,你在用–single-transaction 方法做逻辑备份的过程中,如果主库上的一个小表做了一个 DDL,比如给一个表上加了一列。这时候,从备库上会看到什么现象呢?

解答
备份时的SQL语句如下

  1. Q1:SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ;
  2. Q2:START TRANSACTION WITH CONSISTENT SNAPSHOT
  3. /* other tables */
  4. Q3:SAVEPOINT sp;
  5. /* Q3.5 */
  6. Q4:show create table `t1`;
  7. /* Q4.5 */
  8. Q5:SELECT * FROM `t1`;
  9. /* Q5.5 */
  10. Q6:ROLLBACK TO SAVEPOINT sp;
  11. /* Q6.5 */
  12. /* other tables */

在备份开始的时候,为了确保 RR(可重复读)隔离级别,再设置一次 RR 隔离级别 (Q1);
启动事务,这里用 WITH CONSISTENT SNAPSHOT 确保这个语句执行完就可以得到一个一致性视图(Q2);
设置一个保存点,这个很重要(Q3);

两阶段锁,事务回滚或者提交时,才会释放锁。Q6之后还需要备份其他表。备份期间会占用MDL读锁,设置回滚点,读完数据后,回滚释放锁。将锁的占用时间控制到最短。

show create 是为了拿到表结构 (Q4),然后正式导数据,这里会获取MDL读锁 (Q5),回滚到 SAVEPOINT sp,在这里的作用是释放 t1 的 MDL 锁 (Q6)。

DDL从主库传过来时会获取表的写锁,DDL 从主库传过来的时间按照效果不同(假设DDL到了就执行完成):

  • 如果在 Q4 语句执行之前到达

现象:没有影响,备份拿到的是 DDL 后的表结构。

  • 如果在Q3.5到达,则表结构被DDL修改,Q5 执行的时候,报 Table definition has changed, please retry transaction

获取表结构和后面的select是强相关的,但是到这时还没有加锁,因此,此时是可以执行dll语句的,当获取表结构后再select的时候发现表结构变更了就会报错,是备份创建的表结构和当前的表结构不匹配导致的
现象:mysqldump 终止

  • 如果在Q4.5和Q5.5之间到达,则mysqldump占着表 t1 的 MDL 读锁,DDL获取MDL写锁时被阻塞,binlog 被阻塞

现象:主从延迟,直到 Q6 执行完成。

  • Q6.5开始,mysqldump 释放了 MDL 读锁,现象:没有影响,备份拿到的是 DDL 前的表结构

3 行锁

MySQL 的行锁是在引擎层由各个引擎自己实现的。但并不是所有的引擎都支持行锁,比如 MyISAM 引擎就不支持行锁。
不支持行锁意味着并发控制只能使用表锁,对于这种引擎的表,同一张表上任何时刻只能有一个更新在执行,这就会影响到业务并发度。
InnoDB 是支持行锁的,这也是 MyISAM 被 InnoDB 替代的重要原因之一

我们今天就主要来聊聊 InnoDB 的行锁,以及如何通过减少锁冲突来提升业务并发度。
顾名思义,行锁就是针对数据表中行记录的锁。这很好理解,比如事务 A 更新了一行,而这时候事务 B 也要更新同一行,则必须等事务 A 的操作完成后才能进行更新。当然,数据库中还有一些没那么一目了然的概念和设计,这些概念如果理解和使用不当,容易导致程序出现非预期行为,比如两阶段锁。

行锁与索引

行锁的实现是通过给索引上的索引项添加锁实现的

如果update(或select..for update)时,where的列没建索引,那么就会走主键索引,逐行扫描满足条件的行,等于将主键索引所有的行上了锁,相当于锁了整张表

两阶段锁

在下面的操作序列中,事务B的update语句执行时会是什么现象呢?假设字段id是表t的主键
image.png
这个问题的结论取决于事务 A 在执行完两条 update 语句后,持有哪些锁,以及在什么时候释放。
你可以验证一下:实际上事务 B 的 update 语句会被阻塞,直到事务 A 执行 commit 之后,事务 B 才能继续执行。知道了这个答案,你一定知道了事务 A 持有的两个记录的行锁,都是在 commit 的时候才释放的。

在 InnoDB 事务中,行锁是在需要的时候才加上的,但并不是不需要了就立刻释放,而是要等到事务结束时才释放。这个就是两阶段锁协议。
知道了这个设定,对我们使用事务有什么帮助呢?那就是,如果你的事务中需要锁多个行,要把最可能造成锁冲突、最可能影响并发度的锁尽量往后放。

我给你举个例子。假设你负责实现一个电影票在线交易业务,顾客 A 要在影院 B 购买电影票。我们简化一点,这个业务需要涉及到以下操作:

  • 从顾客 A 账户余额中扣除电影票价;
  • 给影院 B 的账户余额增加这张电影票价;
  • 记录一条交易日志。

也就是说,要完成这个交易,我们需要 update 两条记录,并 insert 一条记录。当然,为了保证交易的原子性,我们要把这三个操作放在一个事务中。那么,你会怎样安排这三个语句在事务中的顺序呢?试想如果同时有另外一个顾客 C 要在影院 B 买票,那么这两个事务冲突的部分就是语句 2 了。因为它们要更新同一个影院账户的余额,需要修改同一行数据。根据两阶段锁协议,不论你怎样安排语句顺序,所有的操作需要的行锁都是在事务提交的时候才释放的。
所以,如果你把语句 2 安排在最后,比如按照 3、1、2 这样的顺序,那么影院账户余额这一行的锁时间就最少。这就最大程度地减少了事务之间的锁等待,提升了并发度。好了,现在由于你的正确设计,影院余额这一行的行锁在一个事务中不会停留很长时间。
但是,这并没有完全解决你的困扰。如果这个影院做活动,可以低价预售一年内所有的电影票,而且这个活动只做一天。于是在活动时间开始的时候,你的 MySQL 就挂了。你登上服务器一看,CPU 消耗接近 100%,但整个数据库每秒就执行不到 100 个事务。这是什么原因呢?这里,我就要说到死锁和死锁检测了。

死锁和死锁检测

当并发系统中不同线程出现循环资源依赖,涉及的线程都在等待别的线程释放资源时,就会导致这几个线程都进入无限等待的状态,称为死锁。
这里我用数据库中的行锁举个例子。
image.png
这时候,事务 A 在等待事务 B 释放 id=2 的行锁,而事务 B 在等待事务 A 释放 id=1 的行锁。 事务 A 和事务 B 在互相等待对方的资源释放,就是进入了死锁状态。

当出现死锁以后,有两种策略:

  • 一种策略是,直接进入等待,直到超时。这个超时时间可以通过参数 innodb_lock_wait_timeout 来设置。
  • 另一种策略是,发起死锁检测,发现死锁后,主动回滚死锁链条中的某一个事务,让其他事务得以继续执行。将参数 innodb_deadlock_detect 设置为 on,表示开启这个逻辑。

在 InnoDB 中,innodb_lock_wait_timeout的默认值是50s,意味着如果采用第一个策略,当出现死锁以后,第一个被锁住的线程要过50s才会超时退出,然后其他线程才有可能继续执行。对于在线服务来说,这个等待时间往往是无法接受的。但是,我们又不可能直接把这个时间设置成一个很小的值,比如1s。这样当出现死锁的时候,确实很快就可以解开,但如果不是死锁,而是简单的锁等待呢?所以,超时时间设置太短的话,会出现很多误伤

正常情况下我们要采用第二种策略,即:主动死锁检测,且innodb_deadlock_detect 的默认值本身就是on

主动死锁检测在发生死锁的时候,是能够快速发现并进行处理的,但是它也是有额外负担的。
你可以想象一下这个过程:一个事务F尝试获取锁β时被阻塞,此时就要看看持有锁β的事务C有没有被阻塞,如果没有被阻塞则没事,如果事务C被锁γ阻塞,则继续查看持有锁γ的事务D有没有被阻塞…这样一直检查下去,假如最后检查到的事务E被锁α阻塞,而事务F持有α,则说明发生了循环等待,即检查到了死锁
如果所有n个事务都要更新同一行的场景呢?每个新来的被堵住的线程,都要判断会不会由于自己的加入导致了死锁,这是一个时间复杂度是 O(n) 的操作
假设有 1000 个并发线程要同时更新同一行,那么死锁检测操作就是 100 万这个量级的。虽然最终检测的结果是没有死锁,但是这期间要消耗大量的 CPU 资源。

因此,你就会看到 CPU 利用率很高,但是每秒却执行不了几个事务。根据上面的分析,我们来讨论一下,怎么解决由这种热点行更新导致的性能问题呢?问题的症结在于,死锁检测要耗费大量的 CPU 资源

  • 一种头痛医头的方法,就是如果你能确保这个业务一定不会出现死锁,可以临时把死锁检测关掉

但是这种操作本身带有一定的风险,因为业务设计的时候一般不会把死锁当做一个严重错误,毕竟出现死锁了,就回滚,然后通过业务重试一般就没问题了,这是业务无损的。而关掉死锁检测意味着可能会出现大量的超时,这是业务有损的。

  • 另一个思路是控制并发度

根据上面的分析,你会发现如果并发能够控制住,比如同一行同时最多只有 10 个线程在更新,那么死锁检测的成本很低,就不会出现这个问题

  • 一个直接的想法就是,在客户端做并发控制。但是,你会很快发现这个方法不太可行,因为客户端很多。我见过一个应用,有 600 个客户端,这样即使每个客户端控制到只有 5 个并发线程,汇总到数据库服务端以后,峰值并发数也可能要达到 3000。
  • 因此,这个并发控制要做在数据库服务端。如果你有中间件,可以考虑在中间件实现;如果你的团队有能修改 MySQL 源码的人,也可以做在 MySQL 里面。基本思路就是,对于相同行的更新,在进入引擎之前排队。这样在 InnoDB 内部就不会有大量的死锁检测工作了
  • 可能你会问,如果团队里暂时没有数据库方面的专家,不能实现这样的方案,能不能从设计上优化这个问题呢?你可以考虑通过将一行改成逻辑上的多行来减少锁冲突。还是以影院账户为例,可以考虑放在多条记录上,比如 10 个记录,影院的账户总额等于这 10 个记录的值的总和。这样每次要给影院账户加金额的时候,随机选其中一条记录来加。这样每次冲突概率变成原来的 1/10,可以减少锁等待个数,也就减少了死锁检测的 CPU 消耗。这个方案看上去是无损的,但其实这类方案需要根据业务逻辑做详细设计。如果账户余额可能会减少,比如退票逻辑,那么这时候就需要考虑当一部分行记录变成 0 的时候,代码要有特殊处理。

问题 如果你要删除一个表里面的前 10000 行数据,有以下三种方法可以做到:

  • 第一种,直接执行 delete from T limit 10000;
  • 第二种,在一个连接中循环执行 20 次 delete from T limit 500;
  • 第三种,在 20 个连接中同时执行 delete from T limit 500。

你会选择哪一种方法呢?

第二种方式是相对较好的。

  • 第一种方式(即:直接执行 delete from T limit 10000)里面,单个语句占用时间长,锁的时间也比较长;而且大事务还会导致主从延迟
  • 第三种方式(即:在 20 个连接中同时执行 delete from T limit 500),会人为制造很多锁冲突,导致MySQL耗费大量资源进行死锁检测。本身多次删除就是串行的,这里用多个连接同时执行不但没有意义,反而会耗费更多资源