一 特性
- 在jdk7之中是使用分段锁来保证的(ReentrantLock + Segment + HashEntry) 将HashMap分成多个片段segment,每个段分配一把锁,在8之中使用CAS+Snchronized+Node+红黑树保证的,锁的粒度是Node 首节点
- jdk1.7的结构
- jdk1.8的结构
-
二 属性
```java private static final int MAXIMUM_CAPACITY = 1 << 30;
/* 默认大小 / private static final int DEFAULT_CAPACITY = 16;
// 最大数组长度-转数组使用 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
/** 最多的并行度
*/
private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
/**负载因子
*/
private static final float LOAD_FACTOR = 0.75f;
/** 元素超过这个值会转换为红黑树
*/
static final int TREEIFY_THRESHOLD = 8;
/** 总元素最小的转换成树的条件 不满足这个只会扩容
*/
static final int MIN_TREEIFY_CAPACITY = 64;
// 扩容操作中,单个线程的最小步进 // 数据迁移通过分段迁移,由多线程协调执行,最小段数量为16,则如果长度为16,由一个线程进行扩容 private static final int MIN_TRANSFER_STRIDE = 16;
// 扩容操作使用
private static int RESIZE_STAMP_BITS = 16;
//最大扩容线程数量
private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
// 扩容操作使用,进行sizeCtl高低位移动,进行扩容线程数判断
private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
/* 实际存储的数组
/
transient volatile Node
/**
* 扩容的时候使用的下一个数组
*/
private transient volatile Node<K,V>[] nextTable;
/** 统计数量
* races. Updated via CAS.
*/
private transient volatile long baseCount;
// 用于和负数hash值进行 & 运算,将其转化为正数(绝对值不相等)
static final int HASH_BITS = 0x7fffffff;
// ForwardingNode的hash值,ForwardingNode是一种临时节点,在扩进行中才会出现,并且它不存储实际的数据,ForwardingNode继承自Node,默认hash初始化为-1 static final int MOVED = -1;
// 红黑树的HASH值 static final int TREEBIN = -2;
// ReservationNode的hash值,ReservationNode是一个保留节点,就是个占位符 static final int RESERVED = -3;
/*
- 非常重要的一个属性,源码中的英文翻译,直译过来是下面的四行文字的意思
- sizeCtl = -1,表示有线程正在进行真正的初始化操作
- sizeCtl = -(1 + nThreads),表示有nThreads个线程正在进行扩容操作
- sizeCtl > 0,表示接下来的真正的初始化操作中使用的容量,或者初始化/扩容完成后的阈值
sizeCtl = 0,默认值,此时在真正的初始化操作中使用默认容量 */ private transient volatile int sizeCtl;
// 扩容任务的起始下标 private transient volatile int transferIndex;
// CAS自旋锁标志位,用于初始化,或者counterCells扩容时使用 private transient volatile int cellsBusy;
// 分段计数,记录 private transient volatile CounterCell[] counterCells;
<a name="W7P87"></a>
# 三 重要方法
- tabAt(Node<K,V>[] tab, int i)
- 获取i索引处对象
- casTabAt(Node<K,V>[] tab, int i,Node<K,V> c, Node<K,V> v)
- 把索引 i 处为C 的对象换成V cas方式比较更新
- setTabAt(Node<K,V>[] tab, int i, Node<K,V> v)
- 把 i 索引处对象设置为V
- tableSizeFor
- 给一个传入的数,返回大于给定数字的最小的2的整数次方的数字
<a name="S9VT1"></a>
# 四 添加
```java
final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();
//将hash值进行扰乱 (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16) 这个是hashMap的
// (h ^ (h >>> 16)) & HASH_BITS
int hash = spread(key.hashCode());
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
//这个是初始化阶段
if (tab == null || (n = tab.length) == 0)
//还未初始化则先开始初始化
tab = initTable();
//unSafe直接读取内存 如果指定位置是null 则直接插入
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
//扩容阶段
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
else {
V oldVal = null;
//锁住发生hash冲突的第一个节点
synchronized (f) {
//加锁之后再重新检查下 避免其他线程对f进行了更改
if (tabAt(tab, i) == f) {
// 判断头结点的hash值
if (fh >= 0) {
binCount = 1;
//循环链表操作 这里binCount是下边使用进行树化使用
for (Node<K,V> e = f;; ++binCount) {
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
//循环链表
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
//红黑树插入
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
addCount(1L, binCount);
return null;
}
// 初始化数组
private final Node<K,V>[] initTable() {
Node<K,V>[] tab; int sc;
while ((tab = table) == null || tab.length == 0) {
if ((sc = sizeCtl) < 0)
Thread.yield(); // lost initialization race; just spin
//java的cas更新方法 读取传入对象在内存中偏移量为SIZECTL 的值与 sc作比较,相等则将-1赋值进入 表示正在初始化 不相等则返回false
// SIZECTL 这个是静态实例已经被初始化为 U.objectFieldOffset(k.getDeclaredField("sizeCtl"));
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
try {
if ((tab = table) == null || tab.length == 0) {
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
table = tab = nt;
// 16 - 4=12
sc = n - (n >>> 2);
}
} finally {
sizeCtl = sc;
}
break;
}
}
return tab;
}
//作用是找到指定位置i的值 使用的是UnSafe直接操作的内存 找到对应位置的偏移量
static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
}
//cas的方式更新进去 先比较在更新
static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
Node<K,V> c, Node<K,V> v) {
return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
}
//当发生hash冲突 check传入的是链的大小
private final void addCount(long x, int check) {
CounterCell[] as; long b, s;
if ((as = counterCells) != null ||
//注意这里会把值累加到 baseCount上 也就是当发生并行访问冲突的时候才会用到下边的代码
!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
CounterCell a; long v; int m;
boolean uncontended = true;
if (as == null || (m = as.length - 1) < 0 ||
(a = as[ThreadLocalRandom.getProbe() & m]) == null ||
!(uncontended =
U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
fullAddCount(x, uncontended);
return;
}
if (check <= 1)
return;
s = sumCount();
}
if (check >= 0) {
Node<K,V>[] tab, nt; int n, sc;
while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
(n = tab.length) < MAXIMUM_CAPACITY) {
int rs = resizeStamp(n);
if (sc < 0) {
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
transfer(tab, nt);
}
else if (U.compareAndSwapInt(this, SIZECTL, sc,
(rs << RESIZE_STAMP_SHIFT) + 2))
transfer(tab, null);
s = sumCount();
}
}
}
// 树化的过程中同样是锁头结点
private final void treeifyBin(Node<K,V>[] tab, int index) {
Node<K,V> b; int n, sc;
if (tab != null) {
if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
tryPresize(n << 1);
else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
synchronized (b) {
if (tabAt(tab, index) == b) {
TreeNode<K,V> hd = null, tl = null;
for (Node<K,V> e = b; e != null; e = e.next) {
TreeNode<K,V> p =
new TreeNode<K,V>(e.hash, e.key, e.val,
null, null);
if ((p.prev = tl) == null)
hd = p;
else
tl.next = p;
tl = p;
}
setTabAt(tab, index, new TreeBin<K,V>(hd));
}
}
}
}
}
initTable
-
五treeifyBin
// 树化的过程中同样是锁头结点
private final void treeifyBin(Node<K,V>[] tab, int index) {
Node<K,V> b; int n, sc;
if (tab != null) {
//必须大于 64才会进行树化 否则会进行扩容
if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
tryPresize(n << 1);
else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
//这里如果插入过程中发生了根节点的变动 这里是将根节点的值进行了改变,而不是对象 所以锁根节点并未失效
synchronized (b) {
if (tabAt(tab, index) == b) {
TreeNode<K,V> hd = null, tl = null;
for (Node<K,V> e = b; e != null; e = e.next) {
TreeNode<K,V> p =
new TreeNode<K,V>(e.hash, e.key, e.val,
null, null);
if ((p.prev = tl) == null)
hd = p;
else
tl.next = p;
tl = p;
}
//红黑树插入 在构造函数之中
setTabAt(tab, index, new TreeBin<K,V>(hd));
}
}
}
}
}
六 addCount
```java // 数量的统计
private final void addCount(long x, int check) { CounterCell[] as; long b, s; //这里一旦发生过并发冲突之后就不会添加baseCount了 就会直接进入下边的流程 if ((as = counterCells) != null ||//这里是并发的情况下可能会设置失败 会进入下边的流程
!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
CounterCell a; long v; int m;
boolean uncontended = true;
if (as == null || (m = as.length - 1) < 0 ||
(a = as[ThreadLocalRandom.getProbe() & m]) == null ||
!(uncontended =
U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
fullAddCount(x, uncontended);
return;
}
if (check <= 1)
return;
s = sumCount();
} if (check >= 0) {
Node<K,V>[] tab, nt; int n, sc;
//这里使用while循环主要是避免并发量高的时候连续进行扩容 所以是这样的
while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
(n = tab.length) < MAXIMUM_CAPACITY) {
int rs = resizeStamp(n);
//当出现并发的时候会进入这里 这里没看懂
if (sc < 0) {
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
transfer(tab, nt);
}
else if (U.compareAndSwapInt(this, SIZECTL, sc,
(rs << RESIZE_STAMP_SHIFT) + 2))
transfer(tab, null);
s = sumCount();
}
} }
-
private final void fullAddCount(long x, boolean wasUncontended) {
int h;
//这里是获得当前线程的一个随机值
if ((h = ThreadLocalRandom.getProbe()) == 0) {
ThreadLocalRandom.localInit(); // force initialization
h = ThreadLocalRandom.getProbe();
wasUncontended = true;
}
boolean collide = false; // True if last slot nonempty
for (;;) {
CounterCell[] as; CounterCell a; int n; long v;
if ((as = counterCells) != null && (n = as.length) > 0) {
//这里对应位置 CounterCell 的值为null 则新创建
if ((a = as[(n - 1) & h]) == null) {
//这里使用 cellsBusy 锁避免并发问题 先判断能否访问,不能的话会回到for循环的开始继续执行
if (cellsBusy == 0) { // Try to attach new Cell
CounterCell r = new CounterCell(x); // Optimistic create
if (cellsBusy == 0 &&
//锁住 自旋锁
U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
boolean created = false;
try { // Recheck under lock
CounterCell[] rs; int m, j;
if ((rs = counterCells) != null &&
(m = rs.length) > 0 &&
rs[j = (m - 1) & h] == null) {
//将值赋值进去
rs[j] = r;
created = true;
}
} finally {
cellsBusy = 0;
}
if (created)
break;
continue; // Slot is now non-empty
}
}
collide = false;
}
//这里判断如果不进行累加 则直接在原来的CounterCell 上CAS的方式更新对应的值
else if (!wasUncontended) // CAS already known to fail
wasUncontended = true; // Continue after rehash
else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
break;
//下边的代码是如果当前 CounterCell超过NCPU数量 则会进行扩容 扩容为两倍
else if (counterCells != as || n >= NCPU)
collide = false; // At max size or stale
else if (!collide)
collide = true;
else if (cellsBusy == 0 &&
U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
try {
if (counterCells == as) {// Expand table unless stale
//具体扩容操作并赋值进入
CounterCell[] rs = new CounterCell[n << 1];
for (int i = 0; i < n; ++i)
rs[i] = as[i];
counterCells = rs;
}
} finally {
cellsBusy = 0;
}
collide = false;
continue; // Retry with expanded table
}
h = ThreadLocalRandom.advanceProbe(h);
}
// 这里是初始化 counterCells的过程 默认长度是2 cellsBusy 是控制并行访问的
else if (cellsBusy == 0 && counterCells == as &&
U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
boolean init = false;
try { // Initialize table
if (counterCells == as) {
CounterCell[] rs = new CounterCell[2];
//这里会把数量存储到 CounterCell中
rs[h & 1] = new CounterCell(x);
counterCells = rs;
init = true;
}
} finally {
cellsBusy = 0;
}
if (init)
break;
}
else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
break; // Fall back on using base
}
}
对应的结构如下所示<br />
<a name="QP9qS"></a>
# 七 transfer
```java
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
int n = tab.length, stride;
//这里相当于是计算cpu核心数 看最多几个线程同时进行扩容 这里假设计算的结果是2
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
stride = MIN_TRANSFER_STRIDE; // subdivide range
// 这里是初始化操作 初始化下一个数组
if (nextTab == null) { // initiating
try {
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
nextTab = nt;
} catch (Throwable ex) { // try to cope with OOME
sizeCtl = Integer.MAX_VALUE;
return;
}
nextTable = nextTab;
transferIndex = n;
}
int nextn = nextTab.length;
//正在扩容的节点会被赋值 fwd
ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
boolean advance = true;
boolean finishing = false; // to ensure sweep before committing nextTab
//bound的作用相当于为每个线程分区,扩容是按照分区进行的
for (int i = 0, bound = 0;;) {
Node<K,V> f; int fh;
//这里while循环的作用主要是找到当前线程可扩容的区域
while (advance) {
int nextIndex, nextBound;
if (--i >= bound || finishing)
advance = false;
else if ((nextIndex = transferIndex) <= 0) {
i = -1;
advance = false;
}
//当另一个线程也来找可扩容的区域的时候 区域的划分是使用 TRANSFERINDEX 来进行控制的
else if (U.compareAndSwapInt(this, TRANSFERINDEX, nextIndex,nextBound = (nextIndex > stride ?nextIndex - stride : 0))) {
bound = nextBound;
i = nextIndex - 1;
advance = false;
}
}
//这里代表当前线程没有找到可扩容的区域 代表已经扩容完成
if (i < 0 || i >= n || i + n >= nextn) {
int sc;
if (finishing) {
nextTable = null;
table = nextTab;
sizeCtl = (n << 1) - (n >>> 1);
return;
}
if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
return;
finishing = advance = true;
i = n; // recheck before commit
}
}
// 如果扩容的节点是null 则直接赋值fwd
else if ((f = tabAt(tab, i)) == null)
advance = casTabAt(tab, i, null, fwd);
else if ((fh = f.hash) == MOVED)
advance = true; // already processed
else {
//扩容的时候锁住当前要扩容的节点
synchronized (f) {
if (tabAt(tab, i) == f) {
Node<K,V> ln, hn;
if (fh >= 0) {
int runBit = fh & n;
Node<K,V> lastRun = f;
for (Node<K,V> p = f.next; p != null; p = p.next) {
int b = p.hash & n;
if (b != runBit) {
runBit = b;
lastRun = p;
}
}
if (runBit == 0) {
ln = lastRun;
hn = null;
}
else {
hn = lastRun;
ln = null;
}
for (Node<K,V> p = f; p != lastRun; p = p.next) {
int ph = p.hash; K pk = p.key; V pv = p.val;
if ((ph & n) == 0)
ln = new Node<K,V>(ph, pk, pv, ln);
else
hn = new Node<K,V>(ph, pk, pv, hn);
}
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
setTabAt(tab, i, fwd);
advance = true;
}
else if (f instanceof TreeBin) {
TreeBin<K,V> t = (TreeBin<K,V>)f;
TreeNode<K,V> lo = null, loTail = null;
TreeNode<K,V> hi = null, hiTail = null;
int lc = 0, hc = 0;
for (Node<K,V> e = t.first; e != null; e = e.next) {
int h = e.hash;
TreeNode<K,V> p = new TreeNode<K,V>
(h, e.key, e.val, null, null);
if ((h & n) == 0) {
if ((p.prev = loTail) == null)
lo = p;
else
loTail.next = p;
loTail = p;
++lc;
}
else {
if ((p.prev = hiTail) == null)
hi = p;
else
hiTail.next = p;
hiTail = p;
++hc;
}
}
ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
(hc != 0) ? new TreeBin<K,V>(lo) : t;
hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
(lc != 0) ? new TreeBin<K,V>(hi) : t;
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
setTabAt(tab, i, fwd);
advance = true;
}
}
}
}
}
}
八 删除
final V replaceNode(Object key, V value, Object cv) {
int hash = spread(key.hashCode());
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
//删除位置是空的直接返回
if (tab == null || (n = tab.length) == 0 ||
(f = tabAt(tab, i = (n - 1) & hash)) == null)
break;
//要删除的节点正在扩容
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
else {
V oldVal = null;
boolean validated = false;
//同样是锁住特定的节点
synchronized (f) {
if (tabAt(tab, i) == f) {
if (fh >= 0) {
validated = true;
for (Node<K,V> e = f, pred = null;;) {
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
V ev = e.val;
if (cv == null || cv == ev ||
(ev != null && cv.equals(ev))) {
oldVal = ev;
if (value != null)
e.val = value;
else if (pred != null)
pred.next = e.next;
else
setTabAt(tab, i, e.next);
}
break;
}
pred = e;
if ((e = e.next) == null)
break;
}
}
else if (f instanceof TreeBin) {
validated = true;
TreeBin<K,V> t = (TreeBin<K,V>)f;
TreeNode<K,V> r, p;
if ((r = t.root) != null &&
(p = r.findTreeNode(hash, key, null)) != null) {
V pv = p.val;
if (cv == null || cv == pv ||
(pv != null && cv.equals(pv))) {
oldVal = pv;
if (value != null)
p.val = value;
else if (t.removeTreeNode(p))
setTabAt(tab, i, untreeify(t.first));
}
}
}
}
}
if (validated) {
if (oldVal != null) {
if (value == null)
addCount(-1L, -1);
return oldVal;
}
break;
}
}
}
return null;
}
九 获取
public V get(Object key) {
Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
int h = spread(key.hashCode());
if ((tab = table) != null && (n = tab.length) > 0 &&
(e = tabAt(tab, (n - 1) & h)) != null) {
if ((eh = e.hash) == h) {
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
else if (eh < 0)
return (p = e.find(h, key)) != null ? p.val : null;
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}
十 spread
//先保留hash值的高 16位特性,再与int的最大值进行与 相当于或得到int范围内能表示的数字
static final int spread(int h) {
return (h ^ (h >>> 16)) & HASH_BITS;
}
// (n - 1) & hash 实际使用 相当于对n-1取余操作