一、集合框架的概述
1.集合、数组都是对多个数据进行存储操作的结构,简称Java容器。
说明:此时的存储,主要指的是内存层面的存储,不涉及到持久化的存储(.txt,.jpg,.avi,数据库中)
2.1 数组在存储多个数据方面的特点:
> 一旦初始化以后,其长度就确定了。
> 数组一旦定义好,其元素的类型也就确定了。我们也就只能操作指定类型的数据了。
比如:String[] arr;int[] arr1;Object[] arr2;
2.2 数组在存储多个数据方面的缺点:
> 一旦初始化以后,其长度就不可修改。
> 数组中提供的方法非常有限,对于添加、删除、插入数据等操作,非常不便,同时效率不高。
> 获取数组中实际元素的个数的需求,数组没有现成的属性或方法可用
> 数组存储数据的特点:有序、可重复。对于无序、不可重复的需求,不能满足。
二、集合框架
|——Collection接口:单列集合,用来存储一个一个的对象
|——List接口:存储有序的、可重复的数据。 —>“动态”数组
|——ArrayList、LinkedList、Vector
|----Set接口:存储无序的、不可重复的数据 -->高中讲的“集合”<br /> |----HashSet、LinkedHashSet、TreeSet
|----Map接口:双列集合,用来存储一对(key - value)一对的数据 -->高中函数:y = f(x)<br /> |----HashMap、LinkedHashMap、TreeMap、Hashtable、Properties
三、Collection接口中的方法的使用
1、添加
add(Object obj)
addAll(Collection coll) :将coll集合中的元素添加到当前的集合中
2、获取有效元素的个数
3、清空集合
4、是否是空集合
boolean isEmpty() :是空返回true,不是空返回false
public void test1(){
Collection coll = new ArrayList();
//add(Object e):将元素e添加到集合coll中
coll.add("AA");
coll.add("BB");
coll.add(123);//自动装箱
coll.add(new Date());
//size():获取添加的元素的个数
System.out.println(coll.size());//4
//addAll(Collection coll1):将coll1集合中的元素添加到当前的集合中
Collection coll1 = new ArrayList();
coll1.add(456);
coll1.add("CC");
coll.addAll(coll1);
System.out.println(coll.size());//6
System.out.println(coll);
//clear():清空集合元素
coll.clear();
//isEmpty():判断当前集合是否为空
System.out.println(coll.isEmpty());
}
5、是否包含某个元素
boolean contains(Object obj):是通过元素的equals方法来判断是否是同一个对象
boolean containsAll(Collection c):也是调用元素的equals方法来比较的。拿两个集合的元素挨个比较。
Collection coll = new ArrayList();
coll.add(123);
coll.add(456);
// Person p = new Person("Jerry",20);
// coll.add(p);
coll.add(new Person("Jerry",20));
coll.add(new String("Tom"));
coll.add(false);
boolean contains = coll.contains(123);
System.out.println(contains);//true
System.out.println(coll.contains(new String("Tom")));//true
// System.out.println(coll.contains(p));//true
System.out.println(coll.contains(new Person("Jerry",20)));//false -->true
//Person中的equal()方法重写了,如果不重写应该为false,重写为true
//2.containsAll(Collection coll1):判断形参coll1中的所有元素是否都存在于当前集合中。
Collection coll1 = Arrays.asList(123,456);
System.out.println(coll.containsAll(coll1));//true
6、删除
boolean remove(Object obj) :通过元素的equals方法判断是否是要删除的那个元素。只会删除找到的第一个元素
boolean removeAll(Collection coll):取当前集合的差集
public void test2(){
//3.remove(Object obj):从当前集合中移除obj元素。
Collection coll = new ArrayList();
coll.add(123);
coll.add(456);
coll.add(new Person("Jerry",20));
coll.add(new String("Tom"));
coll.add(false);
coll.remove(1234);
System.out.println(coll);//[123, 456, Person{name='Jerry', age=20}, Tom, false]
coll.remove(new Person("Jerry",20));
System.out.println(coll);//[123, 456, Tom, false]
//4. removeAll(Collection coll1):差集:从当前集合中移除coll1中所有的元素。
Collection coll1 = Arrays.asList(123,456);
coll.removeAll(coll1);
System.out.println(coll);//[Tom, false]
}
7、取两个集合的交集
boolean retainAll(Collection c):把交集的结果存在当前集合中,不影响c
Collection coll1 = Arrays.asList(123,456,789);
coll.retainAll(coll1);
System.out.println(coll);//[123, 456]
8、集合是否相等
boolean equals(Object obj)
System.out.println(coll.equals(coll1));//false
9、转成对象数组
Object[] toArray()
Object[] arr = coll.toArray();//已经是数组了
for(int i = 0;i < arr.length;i++){
System.out.println(arr[i]);
}
拓展:数组 —->集合:调用Arrays类的静态方法asList()
List<String> list = Arrays.asList(new String[]{"AA", "BB", "CC"});
System.out.println(list);//[AA, BB, CC]
List arr1 = Arrays.asList(new int[]{123, 456});
System.out.println(arr1.size());//1
List arr2 = Arrays.asList(new Integer[]{123, 456});
System.out.println(arr2.size());//2
10、获取集合对象的哈希值
hashCode()
System.out.println(coll.hashCode());//-1200490100
11、遍历 (集合)
iterator():返回迭代器对象,用于集合遍历
集合元素的遍历操作,使用迭代器Iterator接口
1)内部的方法:hasNext() 和 next()
2)集合对象每次调用iterator()方法都得到一个全新的迭代器对象,默认游标都在集合的第一个元素之前。
3)内部定义了remove(),可以在遍历的时候,删除集合中的元素。此方法不同于集合直接调用remove()
public void test1(){
Collection coll = new ArrayList();
coll.add(123);
coll.add(456);
coll.add(new Person("Jerry",20));
coll.add(new String("Tom"));
coll.add(false);
Iterator iterator = coll.iterator();
////hasNext():判断是否还有下一个元素
while(iterator.hasNext()){
//next():①指针下移 ②将下移以后集合位置上的元素返回
System.out.println(iterator.next());
}
//错误方式二:
//集合对象每次调用iterator()方法都得到一个全新的迭代器对象,默认游标都在集合的第一个元素之前。
while (coll.iterator().hasNext()){
System.out.println(coll.iterator().next());
}
//删除集合中"Tom"
Iterator iterator = coll.iterator();
while (iterator.hasNext()){
Object obj = iterator.next();
if("Tom".equals(obj)){
iterator.remove();
}
}
//遍历集合
iterator = coll.iterator();//让指针从头开始
while (iterator.hasNext()){
System.out.println(iterator.next());
}
}
增强for循环
jdk 5.0 新增了foreach循环,用于遍历集合、数组
for(集合元素的类型 局部变量 : 集合对象)
内部仍然调用了迭代器。本质上是一样的
public class ForTest {
@Test
public void test1(){
Collection coll = new ArrayList();
coll.add(123);
coll.add(456);
coll.add(new Person("Jerry",20));
coll.add(new String("Tom"));
coll.add(false);
//for(集合元素的类型 局部变量 : 集合对象)
//内部仍然调用了迭代器。
for(Object obj : coll){
System.out.println(obj);
}
}
@Test
public void test2(){
int[] arr = new int[]{1,2,3,4,5,6};
//for(数组元素的类型 局部变量 : 数组对象)
for(int i : arr){
System.out.println(i);
}
}
}
练习题
//练习题
@Test
public void test3(){
String[] arr = new String[]{"MM","MM","MM"};
// //方式一:普通for赋值
// for(int i = 0;i < arr.length;i++){
// arr[i] = "GG";
// }
//方式二:增强for循环
for(String s : arr){
s = "GG";//不会更改原有数组
}
for(int i = 0;i < arr.length;i++){
System.out.println(arr[i]);
}//方式一更改为GG,方式二仍为MM
}
四、 List接口
1. List接口框架
|——Collection接口:单列集合,用来存储一个一个的对象
|——List接口:存储有序的、可重复的数据。 —>“动态”数组,替换原有的数组
|——ArrayList:作为List接口的主要实现类;线程不安全的,效率高;底层使用Object[] elementData存储
|——LinkedList:对于频繁的插入、删除操作,使用此类效率比ArrayList高;底层使用双向链表存储
|——Vector:作为List接口的古老实现类;线程安全的,效率低;底层使用Object[] elementData存储
2. ArrayList的源码分析:
2.1 jdk 7情况下
ArrayList list = new ArrayList();//底层创建了长度是10的Object[]数组elementData
list.add(123);//elementData[0] = new Integer(123);
...
list.add(11);//如果此次的添加导致底层elementData数组容量不够,则扩容。
// 默认情况下,扩容为原来的容量的1.5倍,同时需要将原有数组中的数据复制到新的数组中。
结论:建议开发中使用带参的构造器:ArrayList list = new ArrayList(int initialCapacity)
public ArrayList(int initialCapacity) {
if (initialCapacity > 0) {
this.elementData = new Object[initialCapacity];//构建数组
} else if (initialCapacity == 0) {
this.elementData = EMPTY_ELEMENTDATA;
} else {
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
}
}
2.2 jdk 8中ArrayList的变化:
ArrayList list = new ArrayList();//底层Object[] elementData初始化为{}.并没有创建长度为10的数组
list.add(123);//第一次调用add()时,底层才创建了长度10的数组,并将数据123添加到elementData[0]
…
后续的添加和扩容操作与jdk 7 无异。
2.3 小结:
jdk7中的ArrayList的对象的创建类似于单例的饿汉式,而jdk8中的ArrayList的对象的创建类似于单例的懒汉式,延迟了数组的创建,节省内存。
3. LinkedList的源码分析
LinkedList list = new LinkedList(); 内部声明了Node类型的first和last属性,默认值为null
list.add(123);//将123封装到Node中,创建了Node对象。
其中,Node定义为:体现了LinkedList的双向链表的说法
private static class Node<E> {
E item;
Node<E> next;
Node<E> prev;
Node(Node<E> prev, E element, Node<E> next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}
4. Vector的源码分析:
jdk7和jdk8中通过Vector()构造器创建对象时,底层都创建了长度为10的数组。
在扩容方面,默认扩容为原来的数组长度的2倍。
面试题:ArrayList、LinkedList、Vector三者的异同?
同:三个类都是实现了List接口,存储数据的特点相同:存储有序的、可重复的数据
不同:见上
5. List接口中的常用方法
void add(int index, Object ele):在index位置插入ele元素
boolean addAll(int index, Collection eles):从index位置开始将eles中的所有元素添加进来
Object get(int index):获取指定index位置的元素
int indexOf(Object obj):返回obj在集合中首次出现的位置
int lastIndexOf(Object obj):返回obj在当前集合中末次出现的位置
Object remove(int index):移除指定index位置的元素,并返回此元素
Object set(int index, Object ele):设置指定index位置的元素为ele
List subList(int fromIndex, int toIndex):返回从fromIndex到toIndex位置的子集合
总结:常用方法
增:add(Object obj)
删:remove(int index) / remove(Object obj)
改:set(int index, Object ele)
查:get(int index)
插:add(int index, Object ele)
长度:size()
遍历:① Iterator迭代器方式② 增强for循环 ③ 普通的循环
public void test1(){
ArrayList list = new ArrayList();
list.add(123);
list.add(456);
list.add("AA");
list.add(new Person("Tom",12));
list.add(456);
System.out.println(list);
//void add(int index, Object ele):在index位置插入ele元素
list.add(1,"BB");
System.out.println(list);
//boolean addAll(int index, Collection eles):从index位置开始将eles中的所有元素添加进来
List list1 = Arrays.asList(1, 2, 3);//aslist是数组转集合
list.addAll(list1);
// list.add(list1);
System.out.println(list.size());//9
//Object get(int index):获取指定index位置的元素
System.out.println(list.get(0));
//int indexOf(Object obj):返回obj在集合中首次出现的位置。如果不存在,返回-1.
int index = list.indexOf(4567);
System.out.println(index);
//int lastIndexOf(Object obj):返回obj在当前集合中末次出现的位置。如果不存在,返回-1.
System.out.println(list.lastIndexOf(456));
//Object remove(int index):移除指定index位置的元素,并返回此元素
Object obj = list.remove(0);
System.out.println(obj);
System.out.println(list);
//Object set(int index, Object ele):设置指定index位置的元素为ele
list.set(1,"CC");
System.out.println(list);
//List subList(int fromIndex, int toIndex):返回从fromIndex到toIndex位置的左闭右开区间的子集合
List subList = list.subList(2, 4);
System.out.println(subList);
System.out.println(list);
//方式一:Iterator迭代器方式
Iterator iterator = list.iterator();
while(iterator.hasNext()){
System.out.println(iterator.next());
}
System.out.println("***************");
//方式二:增强for循环
for(Object obj : list){
System.out.println(obj);
}
System.out.println("***************");
//方式三:普通for循环
for(int i = 0;i < list.size();i++){
System.out.println(list.get(i));
}
}
面试题
public class ListExer {
/*
区分List中remove(int index)和remove(Object obj)
*/
@Test
public void testListRemove() {
List list = new ArrayList();
list.add(1);
list.add(2);
list.add(3);
updateList(list);
System.out.println(list);//[1, 3]
}
private void updateList(List list) {
// list.remove(2);//这是删除了第二个位置,返回3,[1, 2]
list.remove(new Integer(2));//删除了2,返回true,[1, 3]
}
}
五、set接口
1. Set接口的框架:
|——Collection接口:单列集合,用来存储一个一个的对象
|——Set接口:存储无序的、不可重复的数据 —>高中讲的“集合”
|——HashSet:作为Set接口的主要实现类;线程不安全的;可以存储null值
|——LinkedHashSet:作为HashSet的子类;遍历其内部数据时,可以按照添加的顺序遍历
对于频繁的遍历操作,LinkedHashSet效率高于HashSet.
|——TreeSet:可以按照添加对象的指定属性,进行排序。
1) Set接口中没有额外定义新的方法,使用的都是Collection中声明过的方法。
2)要求:向Set(主要指:HashSet、LinkedHashSet)中添加的数据,其所在的类一定要重写hashCode()和equals()
要求:重写的hashCode()和equals()尽可能保持一致性:相等的对象必须具有相等的散列码
重写两个方法的小技巧:对象中用作 equals() 方法比较的 Field,都应该用来计算 hashCode 值。通常参与计算hashCode的对象的属性也应该参与到equals()中进行计算
2、HashSet
Set:存储无序的、不可重复的数据
以HashSet为例说明:
1. 无序性:不等于随机性。存储的数据在底层数组中并非按照数组索引的顺序添加,而是根据数据的哈希值决定的。
2. 不可重复性:保证添加的元素按照equals()判断时,不能返回true.即:相同的元素只能添加一个。
二、添加元素的过程:以HashSet为例:
我们向HashSet中添加元素a,首先调用元素a所在类的hashCode()方法,计算元素a的哈希值,
此哈希值接着通过某种算法计算出在HashSet底层数组中的存放位置(即为:索引位置),判断
数组此位置上是否已经有元素:
如果此位置上没有其他元素,则元素a添加成功。 —->情况1
如果此位置上有其他元素b(或以链表形式存在的多个元素),则比较元素a与元素b的hash值:
如果hash值不相同,则元素a添加成功。—->情况2
如果hash值相同,进而需要调用元素a所在类的equals()方法:
equals()返回true,元素a添加失败
equals()返回false,则元素a添加成功。—->情况3
对于添加成功的情况2和情况3而言:元素a 与已经存在指定索引位置上数据以链表的方式存储。<br /> jdk 7 :元素a放到数组中,指向原来的元素。<br /> jdk 8 :原来的元素在数组中,指向元素a<br /> 总结:七上八下<br /> HashSet底层:数组+链表的结构。
3、LinkedHashSet的使用
LinkedHashSet作为HashSet的子类,在添加数据的同时,每个数据还维护了两个引用,记录此数据前一个
数据和后一个数据。(可以顺序遍历)
优点:对于频繁的遍历操作,LinkedHashSet效率高于HashSet
public void test2(){
Set set = new LinkedHashSet();
set.add(456);
set.add(123);
set.add(123);
set.add("AA");
set.add("CC");
set.add(new User("Tom",12));
set.add(new User("Tom",12));
set.add(129);
Iterator iterator = set.iterator();
while(iterator.hasNext()){
System.out.println(iterator.next());
}
}
4、TreeSet
1.向TreeSet中添加的数据,要求是相同类的对象。
2.两种排序方式:自然排序(实现Comparable接口) 和 定制排序(Comparator)
3.自然排序中,比较两个对象是否相同的标准为:compareTo()返回0.不再是equals().
//public class User implements Comparable
//按照姓名从大到小排列,年龄从小到大排列
@Override
public int compareTo(Object o) {
if(o instanceof User){
User user = (User)o;
// return -this.name.compareTo(user.name);
int compare = -this.name.compareTo(user.name);
if(compare != 0){
return compare;
}else{
return Integer.compare(this.age,user.age);
}
}else{
throw new RuntimeException("输入的类型不匹配");
}
}
public void test1(){
TreeSet set = new TreeSet();
//失败:不能添加不同类的对象
// set.add(123);
// set.add(456);
// set.add("AA");
// set.add(new User("Tom",12));
//举例一:
// set.add(34);
// set.add(-34);
// set.add(43);
// set.add(11);
// set.add(8);
//举例二:
set.add(new User("Tom",12));
set.add(new User("Jerry",32));
set.add(new User("Jim",2));
set.add(new User("Mike",65));
set.add(new User("Jack",33));
set.add(new User("Jack",56));
Iterator iterator = set.iterator();
while(iterator.hasNext()){
System.out.println(iterator.next());
}
}
4.定制排序中,比较两个对象是否相同的标准为:compare()返回0.不再是equals().
public void test2(){
Comparator com = new Comparator() {
//按照年龄从小到大排列
@Override
public int compare(Object o1, Object o2) {
if(o1 instanceof User && o2 instanceof User){
User u1 = (User)o1;
User u2 = (User)o2;
return Integer.compare(u1.getAge(),u2.getAge());
}else{
throw new RuntimeException("输入的数据类型不匹配");
}
}
};
TreeSet set = new TreeSet(com);
set.add(new User("Tom",12));
set.add(new User("Jerry",32));
set.add(new User("Jim",2));
set.add(new User("Mike",65));
set.add(new User("Mary",33));
set.add(new User("Jack",33));
set.add(new User("Jack",56));
Iterator iterator = set.iterator();
while(iterator.hasNext()){
System.out.println(iterator.next());
}
}
六、Map接口
1、Map的实现类的结构:
|——Map:双列数据,存储key-value对的数据 —-类似于高中的函数:y = f(x)
|——HashMap:作为Map的主要实现类;线程不安全的,效率高;存储null的key和value
|——LinkedHashMap:保证在遍历map元素时,可以按照添加的顺序实现遍历。
原因:在原有的HashMap底层结构基础上,添加了一对指针,指向前一个和后一个元素。
对于频繁的遍历操作,此类执行效率高于HashMap。
|——TreeMap:保证按照添加的key-value对进行排序,实现排序遍历。此时考虑key的自然排序或定制排序
底层使用红黑树
|——Hashtable:作为古老的实现类;线程安全的,效率低;不能存储null的key和value
|——Properties:常用来处理配置文件。key和value都是String类型
HashMap的底层:数组+链表 (jdk7及之前)<br /> 数组+链表+红黑树 (jdk 8)_<br /> 面试题:<br /> 1. HashMap的底层实现原理?<br /> 2. HashMap 和 Hashtable的异同?<br /> 3. CurrentHashMap 与 Hashtable的异同?(暂时不讲)
2、Map结构的理解:
1)Map中的key:无序的、不可重复的,使用Set存储所有的key —-> key所在的类要重写equals()和hashCode() (以HashMap为例)
2)Map中的value:无序的、可重复的,使用Collection存储所有的value —->value所在的类要重写equals()一个键值对:key-value构成了一个Entry对象。
3) Map中的entry:无序的、不可重复的,使用Set存储所有的entry
3、HashMap的底层实现原理?
1)以jdk7为例说明:
HashMap map = new HashMap():
在实例化以后,底层创建了长度是16的一维数组Entry[] table。
…可能已经执行过多次put…
map.put(key1,value1):
首先,调用key1所在类的hashCode()计算key1哈希值,此哈希值经过某种算法计算以后,得到在Entry数组中的存放位置。
如果此位置上的数据为空,此时的key1-value1添加成功。 ——情况1
如果此位置上的数据不为空,(意味着此位置上存在一个或多个数据(以链表形式存在)),比较key1和已经存在的一个或多个数据
的哈希值:
如果key1的哈希值与已经存在的数据的哈希值都不相同,此时key1-value1添加成功。——情况2
如果key1的哈希值和已经存在的某一个数据(key2-value2)的哈希值相同,继续比较:调用key1所在类的equals(key2)方法,比较:
如果equals()返回false:此时key1-value1添加成功。——情况3
如果equals()返回true:使用value1替换value2。
补充:关于情况2和情况3:此时key1-value1和原来的数据以链表的方式存储。
在不断的添加过程中,会涉及到扩容问题,当超出临界值(且要存放的位置非空)时,扩容。默认的扩容方式:扩容为原来容量的2倍,并将原有的数据复制过来。
2) jdk8 相较于jdk7在底层实现方面的不同:
1. new HashMap():底层没有创建一个长度为16的数组
2. jdk 8底层的数组是:Node[],而非Entry[]
3. 首次调用put()方法时,底层创建长度为16的数组
4. jdk7底层结构只有:数组+链表。jdk8中底层结构:数组+链表+红黑树。
4.1 形成链表时,七上八下(jdk7:新的元素指向旧的元素。jdk8:旧的元素指向新的元素)
4.2 当数组的某一个索引位置上的元素以链表形式存在的数据个数 > 8 且当前数组的长度 > 64时,此时此索引位置上的所数据改为使用红黑树存储。
DEFAULT_INITIAL_CAPACITY : HashMap的默认容量,16
DEFAULT_LOAD_FACTOR:HashMap的默认加载因子:0.75
threshold:扩容的临界值,=容量填充因子:16*0.75 => 12
TREEIFY_THRESHOLD:Bucket中链表长度大于该默认值,转化为红黑树:8
MIN_TREEIFY_CAPACITY:桶中的Node被树化时最小的hash表容量:64
4、LinkedHashMap的底层实现原理(了解)//先后顺序
// 源码中:
static class Entry<K,V> extends HashMap.Node<K,V> {
Entry<K,V> before, after;//能够记录添加的元素的先后顺序
Entry(int hash, K key, V value, Node<K,V> next) {
super(hash, key, value, next);
}
}
5、Map中定义的方法:
1)添加、删除、修改操作:
Object put(Object key,Object value):将指定key-value添加到(或修改)当前map对象中
void putAll(Map m):将m中的所有key-value对存放到当前map中
Object remove(Object key):移除指定key的key-value对,并返回value
void clear():清空当前map中的所有数据
public void test3(){
Map map = new HashMap();
//添加
map.put("AA",123);
map.put(45,123);
map.put("BB",56);
//修改
map.put("AA",87);
System.out.println(map);//{AA=87, BB=56, 45=123}
Map map1 = new HashMap();
map1.put("CC",123);
map1.put("DD",123);
map.putAll(map1);
System.out.println(map);//{AA=87, BB=56, CC=123, DD=123, 45=123}
//remove(Object key)
Object value = map.remove("CC");
System.out.println(value);//123
System.out.println(map);//{AA=87, BB=56, DD=123, 45=123}
//clear()
map.clear();//与map = null操作不同
System.out.println(map.size());//0
System.out.println(map);//{}
}
2)元素查询的操作:
Object get(Object key):获取指定key对应的value
boolean containsKey(Object key):是否包含指定的key
boolean containsValue(Object value):是否包含指定的value
int size():返回map中key-value对的个数
boolean isEmpty():判断当前map是否为空
boolean equals(Object obj):判断当前map和参数对象obj是否相等
public void test4(){
Map map = new HashMap();
map.put("AA",123);
map.put(45,123);
map.put("BB",56);
// Object get(Object key)
System.out.println(map.get(45));//123
//containsKey(Object key)
boolean isExist = map.containsKey("BB");
System.out.println(isExist);//true
isExist = map.containsValue(123);
System.out.println(isExist);//true
map.clear();
System.out.println(map.isEmpty());//true
}
3)元视图操作的方法:
Set keySet():返回所有key构成的Set集合
Collection values():返回所有value构成的Collection集合
Set entrySet():返回所有key-value对构成的Set集合
public void test5(){
Map map = new HashMap();
map.put("AA",123);
map.put(45,1234);
map.put("BB",56);
//遍历所有的key集:keySet()
Set set = map.keySet();
Iterator iterator = set.iterator();
while(iterator.hasNext()){
System.out.println(iterator.next());
}
System.out.println();
//遍历所有的value集:values()
Collection values = map.values();
for(Object obj : values){
System.out.println(obj);
}
System.out.println();
//遍历所有的key-value
//方式一:entrySet()
Set entrySet = map.entrySet();
Iterator iterator1 = entrySet.iterator();
while (iterator1.hasNext()){
Object obj = iterator1.next();
//entrySet集合中的元素都是entry
Map.Entry entry = (Map.Entry) obj;
System.out.println(entry.getKey() + "---->" + entry.getValue());
}
System.out.println();
//方式二:
Set keySet = map.keySet();
Iterator iterator2 = keySet.iterator();
while(iterator2.hasNext()){
Object key = iterator2.next();
Object value = map.get(key);
System.out.println(key + "=====" + value);
}
}
4)总结:常用方法:
添加:put(Object key,Object value)
删除:remove(Object key)
修改:put(Object key,Object value)
查询:get(Object key)
长度:size()
遍历:keySet() / values() / entrySet()
6、TreeMap
向TreeMap中添加key-value,要求key必须是由同一个类创建的对象
因为要按照key进行排序:自然排序 、定制排序
1)自然排序
//自然排序
@Test
public void test1(){
TreeMap map = new TreeMap();
User u1 = new User("Tom",23);
User u2 = new User("Jerry",32);
User u3 = new User("Jack",20);
User u4 = new User("Rose",18);
map.put(u1,98);
map.put(u2,89);
map.put(u3,76);
map.put(u4,100);
Set entrySet = map.entrySet();
Iterator iterator1 = entrySet.iterator();
while (iterator1.hasNext()){
Object obj = iterator1.next();
Map.Entry entry = (Map.Entry) obj;
System.out.println(entry.getKey() + "---->" + entry.getValue());
}
}
2) 定制排序:就是需要重写compare写
//定制排序
@Test
public void test2(){
TreeMap map = new TreeMap(new Comparator() {
@Override
public int compare(Object o1, Object o2) {
if(o1 instanceof User && o2 instanceof User){
User u1 = (User)o1;
User u2 = (User)o2;
return Integer.compare(u1.getAge(),u2.getAge());
}
throw new RuntimeException("输入的类型不匹配!");
}
});
User u1 = new User("Tom",23);
User u2 = new User("Jerry",32);
User u3 = new User("Jack",20);
User u4 = new User("Rose",18);
map.put(u1,98);
map.put(u2,89);
map.put(u3,76);
map.put(u4,100);
Set entrySet = map.entrySet();
Iterator iterator1 = entrySet.iterator();
while (iterator1.hasNext()){
Object obj = iterator1.next();
Map.Entry entry = (Map.Entry) obj;
System.out.println(entry.getKey() + "---->" + entry.getValue());
}
}
7、Properties
常用来处理配置文件。key和value都是String类型
Properties pros = new Properties();
fis = new FileInputStream("jdbc.properties");
pros.load(fis);//加载流对应的文件
String name = pros.getProperty("name");
String password = pros.getProperty("password");
System.out.println("name = " + name + ", password = " + password);
七、 Collections工具类
1、概念
Collections 是一个操作 Set、List 和 Map 等集合的工具类
Collections 中提供了一系列静态的方法对集合元素进行排序、查询和修改等操作, 还提供了对集合对象设置不可变、对集合对象实现同步控制等方法
2、方法(静态)
reverse(List):反转 List 中元素的顺序
shuffle(List):对 List 集合元素进行随机排序(随机化,即打乱集合)
sort(List):根据元素的自然顺序对指定 List 集合元素按升序排序
sort(List,Comparator):根据指定的 Comparator 产生的顺序对 List 集合元素进行排序
swap(List,int, int):将指定 list 集合中的 i 处元素和 j 处元素进行交换
Object max(Collection):根据元素的自然顺序,返回给定集合中的最大元素
Object max(Collection,Comparator):根据 Comparator 指定的顺序,返回给定集合中的最大元素
Object min(Collection)
Object min(Collection,Comparator)
List list = new ArrayList();
list.add(123);
list.add(43);
list.add(765);
list.add(-97);
list.add(0);
System.out.println(list);//[123, 43, 765, -97, 0]
Collections.reverse(list);
System.out.println(list);//[0, -97, 765, 43, 123]
Collections.shuffle(list);
System.out.println(list);//[123, -97, 43, 765, 0]
Collections.shuffle(list);
System.out.println(list);//[123, 0, 43, 765, -97]
Collections.sort(list);
System.out.println(list);//[-97, 0, 43, 123, 765]
Collections.swap(list,0,1);
System.out.println(list);//[0, -97, 43, 123, 765]
Comparable a =Collections.max(list);
System.out.println(a);//765
int frequency(Collection,Object):返回指定集合中指定元素的出现次数
int frequency = Collections.frequency(list, 123);
System.out.println(list);//[0, -97, 43, 123, 765]
System.out.println(frequency);//1
void copy(List dest,List src):将src中的内容复制到dest中
//报异常:IndexOutOfBoundsException("Source does not fit in dest")
// List dest = new ArrayList();
// Collections.copy(dest,list);
//正确的:让列表长度一致
List dest = Arrays.asList(new Object[list.size()]);
System.out.println(dest.size());//list.size();
Collections.copy(dest,list);
System.out.println(dest);
boolean replaceAll(List list,Object oldVal,Object newVal):使用新值替换 List 对象的所有旧值
System.out.println(list);//[123, 43, 765, 765, 765, -97, 0]
Collections.replaceAll(list,765,615);
System.out.println(list);//[123, 43, 615, 615, 615, -97, 0]
3、Collections常用方法:同步控制
/* Collections 类中提供了多个 synchronizedXxx() 方法,
该方法可使将指定集合包装成线程同步的集合,从而可以解决
多线程并发访问集合时的线程安全问题
*/
//返回的list1即为线程安全的List
List list1 = Collections.synchronizedList(list);