GRU 的基本概念
LSTM 存在很多变体,其中门控循环单元(Gated Recurrent Unit, GRU)是最常见的一种,也是目前比较流行的一种。GRU是由 Cho 等人在2014年提出的,它对LSTM做了一些简化:
- GRU将LSTM原来的三个门简化成为两个:重置门 $$r_t$$(Reset Gate)和更新门 $$z_t$$ (Update Gate)。
- GRU不保留单元状态 $$c_t$$,只保留隐藏状态 $$h_t$$作为单元输出,这样就和传统RNN的结构保持一致。
- 重置门直接作用于前一时刻的隐藏状态 $$h_{t-1}$$。
GRU的前向计算
GRU的单元结构
图20-7展示了GRU的单元结构。
GRU单元的前向计算公式如下:
更新门
zt = \sigma(h{t-1} \cdot W_z + x_t \cdot U_z) \tag{1}重置门
rt = \sigma(h{t-1} \cdot W_r + x_t \cdot U_r) \tag{2}候选隐藏状态
\tilde{h}t = \tanh((r_t \circ h{t-1}) \cdot W_h + x_t \cdot U_h) \tag{3}隐藏状态
h = (1 - zt) \circ h{t-1} + z_t \circ \tilde{h}_t \tag{4}
GRU的原理浅析
从上面的公式可以看出,GRU通过更新们和重置门控制长期状态的遗忘和保留,以及当前输入信息的选择。更新门和重置门通过sigmoid函数,将输入信息映射到[0,1]区间,实现门控功能。
首先,上一时刻的状态h_{t-1}通过重置门,加上当前时刻输入信息,共同构成当前时刻的即时状态\tilde{h}_t,并通过\tanh函数映射到[-1,1]区间。
然后,通过更新门实现遗忘和记忆两个部分。从隐藏状态的公式可以看出,通过z_t进行选择性的遗忘和记忆。(1-z_t)和z_t有联动关系,上一时刻信息遗忘的越多,当前信息记住的就越多,实现了LSTM中f_t和i_t的功能。
GRU的反向传播
学习了LSTM的反向传播的推导,GRU的推导就相对简单了。我们仍然以l层t时刻的GRU单元为例,推导反向传播过程。
同LSTM, 令:l层t时刻传入误差为\delta{t}l和上一层传入误差\delta{xt}^{l+1}之和,简写为\delta{t}。
令:
z{zt} = h{t-1} \cdot W_z + x_t \cdot U_z \tag{5}
z{rt} = h{t-1} \cdot W_r + x_t \cdot U_r \tag{6}
z_{\tilde{h}t} = (r_t \circ h{t-1}) \cdot W_h + x_t \cdot U_h \tag{7}
则:
\begin{aligned} \delta{z{zt}} = \frac{\partial{loss}}{\partial{ht}} \cdot \frac{\partial{h_t}}{\partial{z_t}} \cdot \frac{\partial{z_t}}{\partial{z{zt}}} \ = \delta_t \cdot (-diag[h{t-1}] + diag[\tilde{h}_t]) \cdot diag[z_t \circ (1-z_t)] \ = \delta_t \circ (\tilde{h}t - h{t-1}) \circ z_t \circ (1-z_t) \end{aligned} \tag{8}
\begin{aligned} \delta{z{\tilde{h}t}} = \frac{\partial{loss}}{\partial{ht}} \cdot \frac{\partial{h_t}}{\partial{\tilde{h}_t}} \cdot \frac{\partial{\tilde{h}t}}{\partial{z{\tilde{h}_t}}} \ = \delta_t \cdot diag[z_t] \cdot diag[1-(\tilde{h}_t)^2] \ &= \delta_t \circ z_t \circ (1-(\tilde{h}_t)^2) \end{aligned} \tag{9} \begin{aligned} \delta{z{rt}} = \frac{\partial{loss}}{\partial{\tilde{h}t}} \cdot \frac{\partial{\tilde{h}t}}{\partial{z{\tilde{h}t}}} \cdot \frac{\partial{z{\tilde{h}t}}}{\partial{r_t}} \cdot \frac{\partial{r_t}}{\partial{z{r_t}}} \ = \delta{z{\tilde{h}t}} \cdot Wh^T \cdot diag[h{t-1}] \cdot diag[rt \circ (1-r_t)] \ &= \delta{z{\tilde{h}t}} \cdot W_h^T \circ h{t-1} \circ r_t \circ (1-r_t) \end{aligned} \tag{10}
由此可求出,t时刻各个可学习参数的误差:
\begin{aligned} d{W{h,t}} = \frac{\partial{loss}}{\partial{z{\tilde{h}t}}} \cdot \frac{\partial{z{\tilde{h}t}}}{\partial{W_h}} = (r_t \circ h{t-1})^T \cdot \delta{z_{\tilde{h}t}} \end{aligned} \tag{11}
\begin{aligned} d{U{h,t}} = \frac{\partial{loss}}{\partial{z{\tilde{h}t}}} \cdot \frac{\partial{z{\tilde{h}t}}}{\partial{U_h}} = x_t^T \cdot \delta{z{\tilde{h}t}} \end{aligned} \tag{12}
\begin{aligned} d{W{r,t}} = \frac{\partial{loss}}{\partial{z{r_t}}} \cdot \frac{\partial{z{rt}}}{\partial{W_r}} = h{t-1}^T \cdot \delta{z{rt}} \end{aligned} \tag{13}
\begin{aligned} d{U{r,t}} = \frac{\partial{loss}}{\partial{z{r_t}}} \cdot \frac{\partial{z{rt}}}{\partial{U_r}} = x_t^T \cdot \delta{z_{rt}} \end{aligned} \tag{14}
\begin{aligned} d{W{z,t}} = \frac{\partial{loss}}{\partial{z{z_t}}} \cdot \frac{\partial{z{zt}}}{\partial{W_z}} = h{t-1}^T \cdot \delta{z{zt}} \end{aligned} \tag{15}
\begin{aligned} d{U{z,t}} = \frac{\partial{loss}}{\partial{z{z_t}}} \cdot \frac{\partial{z{zt}}}{\partial{U_z}} = x_t^T \cdot \delta{z_{zt}} \end{aligned} \tag{16}
可学习参数的最终误差为各个时刻误差之和,即:
d{W_h} = \sum{t=1}^{\tau} d{W{h,t}} = \sum{t=1}^{\tau} (r_t \circ h{t-1})^T \cdot \delta{z{\tilde{h}t}} \tag{17}
d{U_h} = \sum{t=1}^{\tau} d{U{h,t}} = \sum{t=1}^{\tau} x_t^T \cdot \delta{z_{\tilde{h}t}} \tag{18}
d{W_r} = \sum{t=1}^{\tau} d{W{r,t}} = \sum{t=1}^{\tau} h{t-1}^T \cdot \delta{z{rt}} \tag{19}
d{U_r} = \sum{t=1}^{\tau} d{U{r,t}} = \sum{t=1}^{\tau} x_t^T \cdot \delta{z_{rt}} \tag{20}
d{W_z} = \sum{t=1}^{\tau} d{W{z,t}} = \sum{t=1}^{\tau} h{t-1}^T \cdot \delta{z{zt}} \tag{21}
d{U_z} = \sum{t=1}^{\tau} d{U{z,t}} = \sum{t=1}^{\tau} x_t^T \cdot \delta{z_{zt}} \tag{22}
当前GRU cell分别向前一时刻($t-1$)和下一层($l-1$)传递误差,公式如下:
沿时间向前传递:
$$
\begin{aligned} \delta{h{t-1}} = \frac{\partial{loss}}{\partial{h{t-1}}} \ = \frac{\partial{loss}}{\partial{h_t}} \cdot \frac{\partial{h_t}}{\partial{h{t-1}}} + \frac{\partial{loss}}{\partial{z{\tilde{h}t}}} \cdot \frac{\partial{z{\tilde{h}t}}}{\partial{h{t-1}}} \ &+ \frac{\partial{loss}}{\partial{z{rt}}} \cdot \frac{\partial{z{rt}}}{\partial{h{t-1}}} + \frac{\partial{loss}}{\partial{z{zt}}} \cdot \frac{\partial{z{zt}}}{\partial{h{t-1}}} \ = \delta{t} \circ (1-zt) + \delta{z{\tilde{h}t}} \cdot W_h^T \circ r_t \ &+ \delta{z{rt}} \cdot W_r^T + \delta{z_{zt}} \cdot W_z^T \end{aligned} \tag{23}
$$
沿层次向下传递:
\begin{aligned} \delta{x_t} = \frac{\partial{loss}}{\partial{x_t}} = \frac{\partial{loss}}{\partial{z{\tilde{h}t}}} \cdot \frac{\partial{z{\tilde{h}t}}}{\partial{xt}} \ &+ \frac{\partial{loss}}{\partial{z{r_t}}} \cdot \frac{\partial{z{rt}}}{\partial{x_t}} + \frac{\partial{loss}}{\partial{z{zt}}} \cdot \frac{\partial{z{zt}}}{\partial{x_t}} \ = \delta{z{\tilde{h}t}} \cdot U_h^T + \delta{z{rt}} \cdot U_r^T + \delta{z_{zt}} \cdot U_z^T \end{aligned} \tag{24}
以上,GRU反向传播公式推导完毕。
代码实现
本节进行了GRU网络单元前向计算和反向传播的实现。为了统一和简单,测试用例依然是二进制减法。
初始化
本案例实现了没有bias的GRU单元,只需初始化输入维度和隐层维度。
def __init__(self, input_size, hidden_size):
self.input_size = input_size
self.hidden_size = hidden_size
前向计算
def forward(self, x, h_p, W, U):
self.get_params(W, U)
self.x = x
self.z = Sigmoid().forward(np.dot(h_p, self.wz) + np.dot(x, self.uz))
self.r = Sigmoid().forward(np.dot(h_p, self.wr) + np.dot(x, self.ur))
self.n = Tanh().forward(np.dot((self.r * h_p), self.wn) + np.dot(x, self.un))
self.h = (1 - self.z) * h_p + self.z * self.n
def split_params(self, w, size):
s=[]
for i in range(3):
s.append(w[(i*size):((i+1)*size)])
return s[0], s[1], s[2]
# Get shared parameters, and split them to fit 3 gates, in the order of z, r, \tilde{h} (n stands for \tilde{h} in code)
def get_params(self, W, U):
self.wz, self.wr, self.wn = self.split_params(W, self.hidden_size)
self.uz, self.ur, self.un = self.split_params(U, self.input_size)
反向传播
def backward(self, h_p, in_grad):
self.dzz = in_grad * (self.n - h_p) * self.z * (1 - self.z)
self.dzn = in_grad * self.z * (1 - self.n * self.n)
self.dzr = np.dot(self.dzn, self.wn.T) * h_p * self.r * (1 - self.r)
self.dwn = np.dot((self.r * h_p).T, self.dzn)
self.dun = np.dot(self.x.T, self.dzn)
self.dwr = np.dot(h_p.T, self.dzr)
self.dur = np.dot(self.x.T, self.dzr)
self.dwz = np.dot(h_p.T, self.dzz)
self.duz = np.dot(self.x.T, self.dzz)
self.merge_params()
# pass to previous time step
self.dh = in_grad * (1 - self.z) + np.dot(self.dzn, self.wn.T) * self.r + np.dot(self.dzr, self.wr.T) + np.dot(self.dzz, self.wz.T)
# pass to previous layer
self.dx = np.dot(self.dzn, self.un.T) + np.dot(self.dzr, self.ur.T) + np.dot(self.dzz, self.uz.T)
我们将所有拆分的参数merge到一起,便于更新梯度。
def merge_params(self):
self.dW = np.concatenate((self.dwz, self.dwr, self.dwn), axis=0)
self.dU = np.concatenate((self.duz, self.dur, self.dun), axis=0)
最终结果
图20-8展示了训练过程,以及loss和accuracy的曲线变化。
该模型在验证集上可得100%的正确率。网络正确性得到验证。
x1: [1, 1, 1, 0]
- x2: [1, 0, 0, 0]
------------------
true: [0, 1, 1, 0]
pred: [0, 1, 1, 0]
14 - 8 = 6
====================
x1: [1, 1, 0, 0]
- x2: [0, 0, 0, 0]
------------------
true: [1, 1, 0, 0]
pred: [1, 1, 0, 0]
12 - 0 = 12
====================
x1: [1, 0, 1, 0]
- x2: [0, 0, 0, 1]
------------------
true: [1, 0, 0, 1]
pred: [1, 0, 0, 1]
10 - 1 = 9
keras实现
import os
os.environ['KMP_DUPLICATE_LIB_OK']='True'
import matplotlib.pyplot as plt
from MiniFramework.DataReader_2_0 import *
from keras.models import Sequential
from keras.layers import GRU, Dense
train_file = "../data/ch19.train_minus.npz"
test_file = "../data/ch19.test_minus.npz"
def load_data():
dataReader = DataReader_2_0(train_file, test_file)
dataReader.ReadData()
dataReader.Shuffle()
dataReader.GenerateValidationSet(k=10)
x_train, y_train = dataReader.XTrain, dataReader.YTrain
x_test, y_test = dataReader.XTest, dataReader.YTest
x_val, y_val = dataReader.XDev, dataReader.YDev
return x_train, y_train, x_test, y_test, x_val, y_val
def build_model():
model = Sequential()
model.add(GRU(input_shape=(4,2),
units=4))
model.add(Dense(4, activation='sigmoid'))
model.compile(optimizer='Adam',
loss='binary_crossentropy',
metrics=['accuracy'])
return model
#画出训练过程中训练和验证的精度与损失
def draw_train_history(history):
plt.figure(1)
# summarize history for accuracy
plt.subplot(211)
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'validation'])
# summarize history for loss
plt.subplot(212)
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'validation'])
plt.show()
def test(x_test, y_test, model):
print("testing...")
count = x_test.shape[0]
result = model.predict(x_test)
r = np.random.randint(0, count, 10)
for i in range(10):
idx = r[i]
x1 = x_test[idx, :, 0]
x2 = x_test[idx, :, 1]
print(" x1:", reverse(x1))
print("- x2:", reverse(x2))
print("------------------")
print("true:", reverse(y_test[idx]))
print("pred:", reverse(result[idx]))
x1_dec = int("".join(map(str, reverse(x1))), 2)
x2_dec = int("".join(map(str, reverse(x2))), 2)
print("{0} - {1} = {2}".format(x1_dec, x2_dec, (x1_dec - x2_dec)))
print("====================")
# end for
def reverse(a):
l = a.tolist()
l.reverse()
return l
if __name__ == '__main__':
x_train, y_train, x_test, y_test, x_val, y_val = load_data()
print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(x_val.shape)
model = build_model()
history = model.fit(x_train, y_train,
epochs=200,
batch_size=64,
validation_data=(x_val, y_val))
print(model.summary())
draw_train_history(history)
loss, accuracy = model.evaluate(x_test, y_test)
print("test loss: {}, test accuracy: {}".format(loss, accuracy))
test(x_test, y_test, model)
模型输出
test loss: 0.6068302603328929, test accuracy: 0.623161792755127
损失以及准确率曲线
代码位置
原代码位置:ch20, Level2
个人代码:GRU_BinaryNumberMinus**