//初始化容量 16static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;//负载因子static final float DEFAULT_LOAD_FACTOR = 0.75f;//链表长度达到8成,变成红黑树static final int TREEIFY_THRESHOLD = 8//节点数组 transient Node<K,V>[] table;//默认无参构造public HashMap() { this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted}//指定初始容量public HashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR);} final V putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; //如果node数组等于null或者长度位0,则进行初始化扩容 if ((tab = table) == null || (n = tab.length) == 0) //扩容代码 初始容量16 n = (tab = resize()).length; //如果哈希后,对应数组的node节点为null,则直接赋值 if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); else { Node<K,V> e; K k; //如果健的值以及hash等于链表中的第一个键值对节点时,则将e指向该键值对 if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))){ e = p; //如果对应的节点为树类型,则调用红黑树的插入方法 }else if (p instanceof TreeNode){ e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); }else { //对链表进行遍历 for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) { //如果链表中不包含要插入的键值对节点时,则将该节点写入到链表的最后 p.next = newNode(hash, key, value, null); //如果链表的长度大于等于7,则转换成红黑树 if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; //集合长度超过阈值时,进行扩容, if (++size > threshold) resize(); afterNodeInsertion(evict); return null; }final Node<K,V>[] resize() { //将node数组赋值给oldTab Node<K,V>[] oldTab = table; //三元运算,oldTab等于null的话,oldCap=0,否则等于oldTab.length int oldCap = (oldTab == null) ? 0 : oldTab.length; //扩容的阈值 int oldThr = threshold; int newCap, newThr = 0; if (oldCap > 0) { //table容量最大值,不在扩容 if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; //2倍扩容 } else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY){ // double threshold newThr = oldThr << 1; } }else if (oldThr > 0){ // initial capacity was placed in threshold newCap = oldThr; } else { //如果oldCap等于0, 则初始容量位16 newCap = DEFAULT_INITIAL_CAPACITY; //阈值位16*0.75 = 12 newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } //扩容后需要rehash,再分配 threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; table = newTab; if (oldTab != null) { for (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) { oldTab[j] = null; if (e.next == null) newTab[e.hash & (newCap - 1)] = e; else if (e instanceof TreeNode) ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); else { // preserve order Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next; if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) { loTail.next = null; newTab[j] = loHead; } if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }
https://segmentfault.com/a/1190000012926722