三次握手

Tcp/IP协议 - 图1
第一次握手:建立连接时,客户端发送syn包(syn=j)到服务器,并进入SYN_SENT状态,等待服务器确认;SYN:同步序列编号(Synchronize Sequence Numbers)。


第二次握手:服务器收到syn包,必须确认客户的SYN(ack=j+1),同时自己也发送一个SYN包(syn=k),即SYN+ACK包,此时服务器进入SYN_RECV状态;

第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABLISHED(TCP连接成功)状态,完成三次握手。

四次挥手

Tcp/IP协议 - 图2
1)客户端进程发出连接释放报文,并且停止发送数据。释放数据报文首部,FIN=1,其序列号为seq=u(等于前面已经传送过来的数据的最后一个字节的序号加1),此时,客户端进入FIN-WAIT-1(终止等待1)状态。 TCP规定,FIN报文段即使不携带数据,也要消耗一个序号。

2)服务器收到连接释放报文,发出确认报文,ACK=1,ack=u+1,并且带上自己的序列号seq=v,此时,服务端就进入了CLOSE-WAIT(关闭等待)状态。TCP服务器通知高层的应用进程,客户端向服务器的方向就释放了,这时候处于半关闭状态,即客户端已经没有数据要发送了,但是服务器若发送数据,客户端依然要接受。这个状态还要持续一段时间,也就是整个CLOSE-WAIT状态持续的时间。

3)客户端收到服务器的确认请求后,此时,客户端就进入FIN-WAIT-2(终止等待2)状态,等待服务器发送连接释放报文(在这之前还需要接受服务器发送的最后的数据)。

4)服务器将最后的数据发送完毕后,就向客户端发送连接释放报文,FIN=1,ack=u+1,由于在半关闭状态,服务器很可能又发送了一些数据,假定此时的序列号为seq=w,此时,服务器就进入了LAST-ACK(最后确认)状态,等待客户端的确认。

5)客户端收到服务器的连接释放报文后,必须发出确认,ACK=1,ack=w+1,而自己的序列号是seq=u+1,此时,客户端就进入了TIME-WAIT(时间等待)状态。注意此时TCP连接还没有释放,必须经过2∗∗MSL(最长报文段寿命)的时间后,当客户端撤销相应的TCB后,才进入CLOSED状态。

6)服务器只要收到了客户端发出的确认,立即进入CLOSED状态。同样,撤销TCB后,就结束了这次的TCP连接。可以看到,服务器结束TCP连接的时间要比客户端早一些。

常见面试题

【问题1】为什么连接的时候是三次握手,关闭的时候却是四次握手?

答:因为当Server端收到Client端的SYN连接请求报文后,可以直接发送SYN+ACK报文。其中ACK报文是用来应答的,SYN报文是用来同步的。但是关闭连接时,当Server端收到FIN报文时,很可能并不会立即关闭SOCKET,所以只能先回复一个ACK报文,告诉Client端,”你发的FIN报文我收到了”。只有等到我Server端所有的报文都发送完了,我才能发送FIN报文,因此不能一起发送。故需要四步握手。

【问题2】为什么TIME_WAIT状态需要经过2MSL(最大报文段生存时间)才能返回到CLOSE状态?

答:虽然按道理,四个报文都发送完毕,我们可以直接进入CLOSE状态了,但是我们必须假象网络是不可靠的,有可以最后一个ACK丢失。所以TIME_WAIT状态就是用来重发可能丢失的ACK报文。在Client发送出最后的ACK回复,但该ACK可能丢失。Server如果没有收到ACK,将不断重复发送FIN片段。所以Client不能立即关闭,它必须确认Server接收到了该ACK。Client会在发送出ACK之后进入到TIME_WAIT状态。Client会设置一个计时器,等待2MSL的时间。如果在该时间内再次收到FIN,那么Client会重发ACK并再次等待2MSL。所谓的2MSL是两倍的MSL(Maximum Segment Lifetime)。MSL指一个片段在网络中最大的存活时间,2MSL就是一个发送和一个回复所需的最大时间。如果直到2MSL,Client都没有再次收到FIN,那么Client推断ACK已经被成功接收,则结束TCP连接。

【问题3】为什么不能用两次握手进行连接?

答:3次握手完成两个重要的功能,既要双方做好发送数据的准备工作(双方都知道彼此已准备好),也要允许双方就初始序列号进行协商,这个序列号在握手过程中被发送和确认。

现在把三次握手改成仅需要两次握手,死锁是可能发生的。作为例子,考虑计算机S和C之间的通信,假定C给S发送一个连接请求分组,S收到了这个分组,并发 送了确认应答分组。按照两次握手的协定,S认为连接已经成功地建立了,可以开始发送数据分组。可是,C在S的应答分组在传输中被丢失的情况下,将不知道S 是否已准备好,不知道S建立什么样的序列号,C甚至怀疑S是否收到自己的连接请求分组。在这种情况下,C认为连接还未建立成功,将忽略S发来的任何数据分 组,只等待连接确认应答分组。而S在发出的分组超时后,重复发送同样的分组。这样就形成了死锁。

【问题4】如果已经建立了连接,但是客户端突然出现故障了怎么办?

TCP还设有一个保活计时器,显然,客户端如果出现故障,服务器不能一直等下去,白白浪费资源。服务器每收到一次客户端的请求后都会重新复位这个计时器,时间通常是设置为2小时,若两小时还没有收到客户端的任何数据,服务器就会发送一个探测报文段,以后每隔75秒钟发送一次。若一连发送10个探测报文仍然没反应,服务器就认为客户端出了故障,接着就关闭连接。

🚀推荐回答

问:你了解过TCP/IP协议吗?

答:
TCP/IP协议主要有两个规则,一个是三次握手,一个是四次挥手。

三次握手:
TCP/IP 协议是传输层的一个面向连接的安全可靠的一个传输协议,三次握手的机制是为了保证能建立一个安全可靠的连接,那么第一次握手是由客户端发起,客户端会向服务端发送一个报文,在报文里面:SYN标志位置为1,表示发起新的连接。当服务端收到这个报文之后就知道客户端要和我建立一个新的连接,于是服务端就向客户端发送一个确认消息包,在这个消息包里面:ACK标志位置为1,表示确认客户端发起的第一次连接请求。以上两次握手之后,对于客户端而言:已经明确了我既能给服务端成功发消息,也能成功收到服务端的响应。但是对于服务端而言:两次握手是不够的,因为到目前为止,服务端只知道一件事,客户端发给我的消息我能收到,但是我响应给客户端的消息,客户端能不能收到我是不知道的。所以,还需要进行第三次握手,第三次握手就是当客户端收到服务端发送的确认响应报文之后,还要继续去给服务端进行回应,也是一个ACK标志位置1的确认消息。通过以上三次连接,不管是客户端还是服务端,都知道我既能给对方发送消息,也能收到对方的响应。那么,这个连接就被安全的建了。

四次挥手:
四次握手机制可以由客户端去发起,客户端会发送一个报文,在报文里面FIN位标志位置一,当服务端收到这个报文之后,我就知道了客户端想要和我断开连接,但是此时服务端不一定能做好准备,因为当客户端发起断开连接的这个消息的时候,对于服务端而言,他和还有可能有未发送完的消息,他还要继续发送,所以呢,此时对于服务端而言,我只能进行一个消息确认,就是我先告诉服务端,我知道你要给我断开连接了,但是我这里边还可能没有做好准备,你需要等我一下,等会儿我会告诉你,于是呢,发完这个消息确认包之后,可能稍过片刻它就会继续发送一个断开连接的一个报文啊,也是一个FIN位置1的报文也是由服务端发给客户端的啊,这个报文表示服务端已经做好了断开连接的准备,那么当这个报文发给客户端的时候,客户端同样要给服务端继续发送一个消息确认的报文一共有四次,那么,通过这四次的相互沟通和连接,我就知道了,不管是服务端还是客户端都已经做好了断开连接的准备,于是连接就可以被断开啊,这是我对三次握手和四次挥手的一个理解。