基本属性和常用操作
- 说明
(1)获取集合长度
(2)获取集合大小
(3)循环遍历
(4)迭代器
(5)生成字符串
(6)是否包含
案例实操 ```scala object TestList { def main(args: Array[String]): Unit = { val list: List[Int] = List(1, 2, 3, 4, 5, 6, 7)
//获取集合长度 println(list.length)
//获取集合大小,等同于length println(list.size)
//循环遍历 list.foreach(println)
//迭代器 for (elem <- list.itera tor) { println(elem) }
//生成字符串 println(list.mkString(“,”))
//是否包含 println(list.contains(3)) } }
<a name="tCn4b"></a># 衍生集合1.说明<br />(1)获取集合的头<br />(2)获取集合的尾(不是头的就是尾)<br />(3)集合最后一个数据<br />(4)集合初始数据(不包含最后一个)<br />(5)反转<br />(6)取前(后)n个元素<br />(7)去掉前(后)n个元素<br />(8)并集<br />(9)交集<br />(10)差集<br />(11)拉链<br />(12)滑窗2. **案例实操**```scalaobject TestList {def main(args: Array[String]): Unit = {val list1: List[Int] = List(1, 2, 3, 4, 5, 6, 7)val list2: List[Int] = List(4, 5, 6, 7, 8, 9, 10)//获取集合的头println(list1.head)//获取集合的尾(不是头的就是尾)println(list1.tail)//集合最后一个数据println(list1.last)//集合初始数据(不包含最后一个)println(list1.init)//反转println(list1.reverse)//取前(后)n个元素println(list1.take(3))println(list1.takeRight(3))//去掉前(后)n个元素println(list1.drop(3))println(list1.dropRight(3))//并集println(list1.union(list2))//交集println(list1.intersect(list2))//差集println(list1.diff(list2))//拉链 注:如果两个集合的元素个数不相等,那么会将同等数量的数据进行拉链,多余的数据省略不用println(list1.zip(list2))//滑窗list1.sliding(2, 5).foreach(println)}}
集合计算初级函数
- 说明
(1)求和
(2)求乘积
(3)最大值
(4)最小值
(5)排序
案例实操 ```scala object TestList { def main(args: Array[String]): Unit = { val list: List[Int] = List(1, 5, -3, 4, 2, -7, 6)
//求和 println(list.sum)
//求乘积 println(list.product)
//最大值 println(list.max)
//最小值 println(list.min)
//排序 //按照元素大小排序 println(list.sortBy(x => x))
//按照元素的绝对值大小排序 println(list.sortBy(x => x.abs))
//按元素大小升序排序 println(list.sortWith((x, y) => x < y))
//按元素大小降序排序 println(list.sortWith((x, y) => x > y)) } }
(1)sorted<br />对一个集合进行自然排序,通过传递隐式的Ordering<br />(2)sortBy<br />对一个属性或多个属性进行排序,通过它的类型<br />(3)sortWith<br />基于函数的排序,通过一个comparator函数,实现自定义排序的逻辑<a name="OWn8y"></a># 集合计算高级函数1.说明<br />(1)过滤:遍历一个集合并从中获取满足指定条件的元素组成一个新的集合<br />(2)转化/映射(map):将集合中的每一个元素映射到某一个函数<br />(3)扁平化<br />(4)扁平化+映射 注:flatMap相当于先进行map操作,在进行flatten操作,集合中的每个元素的子元素映射到某个函数并返回新集合<br />(5)分组(group) :按照指定的规则对集合的元素进行分组<br />(6)简化(归约)<br />(7)折叠<br />**2.案例实操**```scalaobject TestList {def main(args: Array[String]): Unit = {val list: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9)val nestedList: List[List[Int]] = List(List(1, 2, 3), List(4, 5, 6), List(7, 8, 9))val wordList: List[String] = List("hello world", "hello atguigu", "hello scala")//过滤println(list.filter(x => x % 2 == 0))//转化/映射println(list.map(x => x + 1))//扁平化println(nestedList.flatten)//扁平化+映射 注:flatMap相当于先进行map操作,在进行flatten操作println(wordList.flatMap(x => x.split(" ")))//分组println(list.groupBy(x => x % 2))}}
输出结果:List(2, 4, 6, 8)List(2, 3, 4, 5, 6, 7, 8, 9, 10)List(1, 2, 3, 4, 5, 6, 7, 8, 9)List(hello, world, hello, atguigu, hello, scala)Map(1 -> List(1, 3, 5, 7, 9), 0 -> List(2, 4, 6, 8))
- Reduce方法
Reduce简化(归约) :通过指定的逻辑将集合中的数据进行聚合,从而减少数据,最终获取结果。
案例实操 ```scala object TestReduce { def main(args: Array[String]): Unit = { val list = List(1,2,3,4)
//将数据两两结合,实现运算规则 val i: Int = list.reduce( (x,y) => x-y ) println(“i = “ + i)
//从源码的角度,reduce底层调用的其实就是reduceLeft //val i1 = list.reduceLeft((x,y) => x-y)
//((4-3)-2-1) = -2 val i2 = list.reduceRight((x,y) => x-y) println(i2) } }
<br />**5.Fold方法**<br />Fold折叠:化简的一种特殊情况<br />**6.案例实操**<br />fold基本使用```scalaobject TestFold {def main(args: Array[String]): Unit = {val list = List(1, 2, 3, 4)//fold方法使用了函数柯里化,存在两个参数列表//第一个参数列表为:零值(初始值)//第二个参数列表为:简化规则//fold底层其实为foldLeftval i = list.foldLeft(1)((x, y) => x - y)val i1 = list.foldRight(10)((x, y) => x - y)println(i)println(i1)}}
两个集合合并
object TestFold {def main(args: Array[String]): Unit = {//两个Map的数据合并val map1 = mutable.Map("a" -> 1, "b" -> 2, "c" -> 3)val map2 = mutable.Map("a" -> 4, "b" -> 5, "d" -> 6)val map3: mutable.Map[String, Int] = map2.foldLeft(map1) {(map, kv) => {val k = kv._1val v = kv._2map(k) = map.getOrElse(k, 0) + vmap}}println(map3)}}
普通WordCount例子
1.需求
单词计数:将集合中出现的相同的单词,进行计数,取计数排名前三的结果
2.需求分析
案例实操 ```scala object TestWordCount { def main(args: Array[String]): Unit = { //单词计数:将集合中出现的相同的单词,进行计数,取计数排名前三的结果 val stringList = List(“Hello Scala Hbase kafka”, “Hello Scala Hbase”, “Hello Scala”, “Hello”)
//将每一个字符串转换成一个一个单词 val wordList: List[String] = stringList.flatMap(str => str.split(“ “)) //println(wordList)
//将相同的单词放置在一起 val wordToWordsMap: Map[String, List[String]] = wordList.groupBy(word => word) //println(wordToWordsMap)
//对相同的单词进行计数 //(word, list) => (word, count) val wordToCountMap: Map[String, Int] = wordToWordsMap.map(tuple => (tuple._1, tuple._2.size))
//对计数完成后的结果进行排序(降序) val sortList: List[(String, Int)] = wordToCountMap.toList.sortWith { (left, right) => {
left._2 > right._2
} }
//对排序后的结果取前3名 val resultList: List[(String, Int)] = sortList.take(3) println(resultList) } }
<a name="O8ymz"></a># 复杂WordCount例子1. **方式一**```scalaobject TestWordCount {def main(args: Array[String]): Unit = {//第一种方式(不通用)val tupleList = List(("Hello Scala Spark World ", 4), ("Hello Scala Spark", 3), ("Hello Scala", 2), ("Hello", 1))val stringList: List[String] = tupleList.map(t => (t._1 + " ") * t._2)//val words: List[String] = stringList.flatMap(s=>s.split(" "))val words: List[String] = stringList.flatMap(_.split(" "))//在map中,如果传进来什么就返回什么,不要用_省略val groupMap: Map[String, List[String]] = words.groupBy(word => word)//val groupMap: Map[String, List[String]] = words.groupBy(_)//(word, list) => (word, count)val wordToCount: Map[String, Int] = groupMap.map(t => (t._1, t._2.size))val wordCountList: List[(String, Int)] = wordToCount.toList.sortWith {(left, right) => {left._2 > right._2}}.take(3)//tupleList.map(t=>(t._1 + " ") * t._2).flatMap(_.split(" ")).groupBy(word=>word).map(t=>(t._1, t._2.size))println(wordCountList)}}
2.方式二
object TestWordCount {def main(args: Array[String]): Unit = {val tuples = List(("Hello Scala Spark World", 4), ("Hello Scala Spark", 3), ("Hello Scala", 2), ("Hello", 1))//(Hello,4),(Scala,4),(Spark,4),(World,4)//(Hello,3),(Scala,3),(Spark,3)//(Hello,2),(Scala,2)//(Hello,1)val wordToCountList: List[(String, Int)] = tuples.flatMap {t => {val strings: Array[String] = t._1.split(" ")strings.map(word => (word, t._2))}}//Hello, List((Hello,4), (Hello,3), (Hello,2), (Hello,1))//Scala, List((Scala,4), (Scala,3), (Scala,2)//Spark, List((Spark,4), (Spark,3)//Word, List((Word,4))val wordToTupleMap: Map[String, List[(String, Int)]] = wordToCountList.groupBy(t => t._1)val stringToInts: Map[String, List[Int]] = wordToTupleMap.mapValues {datas => datas.map(t => t._2)}stringToInts/*val wordToCountMap: Map[String, List[Int]] = wordToTupleMap.map {t => {(t._1, t._2.map(t1 => t1._2))}}val wordToTotalCountMap: Map[String, Int] = wordToCountMap.map(t=>(t._1, t._2.sum))println(wordToTotalCountMap)*/}}
