案例代码:https://github.com/anxpp/Java-IO

概念剖析

相信很多从事linux后台开发工作的都接触过同步&异步、阻塞&非阻塞这样的概念,也相信都曾经产生过误解,比如认为同步就是阻塞、异步就是非阻塞,下面我们先剖析下这几个概念分别是什么含义。

同步

所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不返回。也就是必须一件一件事做,等前一件做完了才能做下一件事。
例如普通B/S模式(同步):提交请求->等待服务器处理->处理完毕返回 这个期间客户端浏览器不能干任何事

异步:

异步的概念和同步相对。当一个异步过程调用发出后,调用者不能立刻得到结果。实际处理这个调用的部件在完成后,通过状态、通知和回调来通知调用者。
例如 ajax请求(异步): 请求通过事件触发->服务器处理(这是浏览器仍然可以作其他事情)->处理完毕

阻塞:

阻塞调用是指调用结果返回之前,当前线程会被挂起(线程进入非可执行状态,在这个状态下,cpu不会给线程分配时间片,即线程暂停运行)。函数只有在得到结果之后才会返回。
有人也许会把阻塞调用和同步调用等同起来,实际上他是不同的。对于同步调用来说,很多时候当前线程还是激活的,只是从逻辑上当前函数没有返回,它还会抢占cpu去执行其他逻辑,也会主动检测io是否准备好。

非阻塞

非阻塞和阻塞的概念相对应,指在不能立刻得到结果之前,该函数不会阻塞当前线程,而会立刻返回。
再简单点理解就是:

  1. 同步,就是我调用一个功能,该功能没有结束前,我死等结果。
  2. 异步,就是我调用一个功能,不需要知道该功能结果,该功能有结果后通知我(回调通知)
  3. 阻塞,就是调用我(函数),我(函数)没有接收完数据或者没有得到结果之前,我不会返回。
  4. 非阻塞,就是调用我(函数),我(函数)立即返回,通过select通知调用者

同步IO和异步IO的区别就在于:数据拷贝的时候进程是否阻塞
阻塞IO和非阻塞IO的区别就在于:应用程序的调用是否立即返回
综上可知,同步和异步,阻塞和非阻塞,有些混用,其实它们完全不是一回事,而且它们修饰的对象也不相同。

五种IO模型

在了解了同步与异步、阻塞与非阻塞概念后,我们来讲讲linux的五种IO模型:
同步模型(synchronous IO)

  1. 阻塞IO(bloking IO)
  2. 非阻塞IO(non-blocking IO)
  3. 多路复用IO(multiplexing IO)
  4. 信号驱动式IO(signal-driven IO)

异步IO(asynchronous IO)

同步阻塞

它是最简单也最常用的网络IO模型。linux下默认的socket都是blocking的。

从图中可以看到,用户进程调用recvfrom这个系统调用后,就处于阻塞状态。然后kernel就开始了IO的第一个阶段:数据准备。等第一个阶段准备完成之后,kernel开始第二阶段,将数据从内核缓冲区拷贝到用户程序缓冲区(需要花费一定时间)。然后kernel返回结果(确切的说是recvfrom这个系统调用函数返回结果),用户进程才结束blocking,重新运行起来。 总结同步阻塞模型下,用户程序在kernel执行io的两个阶段都被blocking住了。但是优点也是因为这个,无延迟能及时返回数据,且程序模型简单。

同步非阻塞

同步非阻塞就是隔一会瞄一下的轮询方式。同步非阻塞模式其实是可以看做一小段一小段的同步阻塞模式。

如图所示,用户进程在read过程中,同样也是先发起recvfrom这个系统调用,不同的是,如果io第一阶段还没准备好,也即内核缓冲区中的数据还没到位的话,recvfrom不会等待数据到位,而是直接给用户程序返回一个error,用户程序收到error后就知道kernel的数据没到位,用户程序可以先去干点别的事,等过了一会再发起recvfrom调用来看看kernel的数据有没有到位。经过一次次的轮询。。。终于当内核中的数据准备就绪且又收到了用户程序发起的recvfrom调用后,kernel会将kernel缓冲区中的数据拷贝到用户程序地址空间。但是请注意:在第二阶段将数据从kernel缓冲区拷贝到用户程序空间的这段时间内,用户程序是阻塞的。
总结:
优点:能够在等待任务完成的时间里干其他活了(包括提交其他任务,也就是 “后台” 可以有多个任务在同时执行)。
缺点:任务完成的响应延迟增大了,因为每过一段时间才去轮询一次read操作,而任务可能在两次轮询之间的任意时间完成。这会导致整体数据吞吐量的降低。

信号驱动式IO(signal-driven IO)

信号驱动式I/O:首先我们允许Socket进行信号驱动IO,并安装一个信号处理函数,进程继续运行并不阻塞。当数据准备好时,进程会收到一个SIGIO信号,可以在信号处理函数中调用I/O操作函数处理数据。过程如下图所示:
Netty教程(一) - 图1

IO多路复用

Netty教程(一) - 图2

由于同步非阻塞方式需要不断的轮询,光轮询就占据了很大一部分过程,且消耗cpu资源。而这个用户进程可能不止对这个socket的read,可能还有对其他socket的read或者write操作,那人们就想到了一次轮询的时候,不光只查询询一个socket fd,而是在一次轮询下,查询多个任务的socket fd的完成状态,只要有任何一个任务完成,就去处理它。而且,轮询人不是进程的用户态,而是有人帮忙就好了。那么这就是所谓的IO多路复用。总所周知的linux下的select,poll和epoll就是这么干的。。。

selelct调用是内核级别的,selelct轮询相比较同步非阻塞模式下的轮询的区别为:前者可以等待多个socket,能实现同时对多个IO端口的监听,当其中任何一个socket数据准备好了,就返回可读。select或poll调用之后,会阻塞进程,与blocking IO 阻塞不用在于,此时的select不是等到所有socket数据达到再处理,而是某个socket数据就会返回给用户进程来处理。
其实select这种相比较同步non-blocking的效果在单个任务的情况下可能还更差一些,因为这里调用了select和recvfrom两个system call,而non-blocking只调用了一个recvfrom,但是用select的优势在于它可以同时处理多个socket fd

在io复用模型下,对于每一个socket,一般都设置成non-blocking,但是其实整个用户进程是一直被block的,只不过用户process不是被socket IO给block住,而是被select这个函数block住的。
与多进程多线程技术相比,IO多路复用的最大优势是系统开销小

select

select函数监视多个socket fs,直到有描述符就绪或者超时,函数返回。当select函数返回后,可以通过遍历fdset,来找到就绪的描述符。select的基本流程为:
select的特点:
1:最大缺陷是单个进程锁打开的fd是有限制的,32位机器上是1024个,64位机器上是2048个,虽然可以改这个数值,但是会造成性能下降。
2:对socket进行扫描时是线性扫描,当套接字比较多时,不管哪个socket是活跃的,都要遍历一遍fdset,很耗时耗cpu(
如果能给套接字注册某个回调函数,当本套接字活跃时,自动完成相关操作,就不用轮询,实际上epoll就是改了这儿

3:需要维护一个用来存放大量fd的数据结构,且在kernel缓冲区和用户缓冲区之间拷贝这个结构的开销很大。

poll

poll本质上跟select没有区别,它将用户传入的数组拷贝到内核空间,然后查询每个fd的状态,如果某个fd的状态为就绪,则将此fd加入到等待队列中并继续遍历。如果遍历完所有的fd后发现没有就绪的,则挂起当前进程,直到设备就绪或者主动超时。被唤醒后它又要再次遍历fd。
特点:
1:poll没有最大连接数限制,因为它是用基于链表来存储的,跟selelct直接监听fd不一样。
2:同样的大量的fd的数组被整体复制与用户态和内核地址空间之间。
3:poll还有一个特点是水平触发:如果报告了fd后没有被处理,则下次poll时还会再次报告该fd。
4:跟select一样,在poll返回后,还是需要通过遍历fdset来获取已经就绪的socket。当fd很多时,效率会线性下降。

epoll

epoll支持水平触发和边缘触发,最大的特点在于边缘触发,它只告诉进程哪些fd刚刚变为就绪态,并且只会通知一次。还有一个特点是,epoll使用“事件”的就绪通知方式,通过epoll_ctl注册fd,一旦该fd就绪,内核就会采用类似callback的回调机制来激活该fd,epoll_wait便可以收到通知。

没有最大并发连接的限制,能打开的FD的上限远大于1024(1G的内存上能监听约10万个端口)。

效率提升,不是轮询的方式,不会随着FD数目的增加效率下降。只有活跃可用的FD才会调用callback函数;即Epoll最大的优点就在于它只管你“活跃”的连接,而跟连接总数无关,因此在实际的网络环境中,Epoll的效率就会远远高于select和poll。

内存拷贝,利用mmap()文件映射内存加速与内核空间的消息传递;即epoll使用mmap减少复制开销。

异步IO

Netty教程(一) - 图3

用户进程发起read操作之后,立刻就可以开始去做其它的事。而另一方面,从kernel的角度,当它受到一个asynchronous read之后,首先它会立刻返回,所以不会对用户进程产生任何block。
然后,kernel会等待数据准备完成,然后将数据拷贝到用户内存,当这一切都完成之后,kernel会给用户进程发送一个signal,告诉它read操作完成了

五中模式对比图

Netty教程(一) - 图4

JAVA NIO

Java NIO 由以下几个核心部分组成:
Channels Buffers Selectors

Channel 和 Buffer

所有的 IO 在NIO 中都从一个Channel 开始。Channel 有点像流。 数据可以从Channel读到Buffer中,也可以从Buffer 写到Channel中。这里有个图示:
Netty教程(一) - 图5

Channel和Buffer有好几种类型。下面是JAVA NIO中的一些主要Channel的实现:
FileChannel DatagramChannel SocketChannel ServerSocketChanne

正如你所看到的,这些通道涵盖了UDP 和 TCP 网络IO,以及文件IO。 与这些类一起的有一些有趣的接口,但为简单起见,我尽量在概述中不提到它们。本教程其它章节与它们相关的地方我会进行解释。
以下是Java NIO里关键的Buffer实现:

  • ByteBuffer
  • CharBuffer
  • DoubleBuffer
  • FloatBuffer
  • IntBuffer
  • LongBuffer
  • ShortBuffer

这些Buffer覆盖了你能通过IO发送的基本数据类型:byte, short, int, long, float, double 和 char。

Java NIO 还有个 MappedByteBuffer,用于表示内存映射文件, 我也不打算在概述中说明。

Selector

Selector允许单线程处理多个 Channel。如果你的应用打开了多个连接(通道),但每个连接的流量都很低,使用Selector就会很方便。例如,在一个聊天服务器中。
这是在一个单线程中使用一个Selector处理3个Channel的图示:
Netty教程(一) - 图6

要使用Selector,得向Selector注册Channel,然后调用它的select()方法。这个方法会一直阻塞到某个注册的通道有事件就绪。一旦这个方法返回,线程就可以处理这些事件,事件的例子有如新连接进来,数据接收等。