Difficulty: Medium
Related Topics: Array, Dynamic Programming
A robot is located at the top-left corner of a m x n
grid (marked ‘Start’ in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).
How many possible unique paths are there?
Example 1:
Input: m = 3, n = 7
Output: 28
Example 2:
Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Down -> Down
2. Down -> Down -> Right
3. Down -> Right -> Down
Example 3:
Input: m = 7, n = 3
Output: 28
Example 4:
Input: m = 3, n = 3
Output: 6
Constraints:
1 <= m, n <= 100
- It’s guaranteed that the answer will be less than or equal to
2 * 10
.
Solution
Language: Java
class Solution {
int[][] memo;
public int uniquePaths(int m, int n) {
memo = new int[m + 1][n + 1];
return dp(m, n);
}
// 定义:机器人从起到到终点的不同种走法
// 起点 (1,1)
// 终点 (m,n)
private int dp(int m, int n) {
// 出口
// 1. m == 1 表示机器人只能向右走
// 2. n == 1 表示机器人只能向下走
if (m == 1 || n == 1) return 1;
if (memo[m][n] != 0) return memo[m][n];
// 机器人可以从两个方向走到终点,分别是:
// 1. (m - 1, n) 从右边走到终点
// 2. (m, n - 1) 从上边走到终点
//
// dp(m, n) = dp(m - 1, n) + dp(m, n - 1);
return memo[m][n] = dp(m - 1, n) + dp(m, n - 1);
}
}