P3312 [SDOI2014]数表 - 图1%20%3D%26%20%5Csum%7Bi%3D1%7D%5En%20i%5Bi%7Cn%5D%20%5C%5C%0A%3D%26%20%5Csum%7Bd%7Cn%7D%20d%0A%5Cend%7Baligned%7D%0A#card=math&code=%5Cbegin%7Baligned%7D%0A%5Csigma%28n%29%20%3D%26%20%5Csum%7Bi%3D1%7D%5En%20i%5Bi%7Cn%5D%20%5C%5C%0A%3D%26%20%5Csum%7Bd%7Cn%7D%20d%0A%5Cend%7Baligned%7D%0A)

    实际上也就是 P3312 [SDOI2014]数表 - 图2 其中,P3312 [SDOI2014]数表 - 图3 表示狄利克雷卷积。

    题意:

    P3312 [SDOI2014]数表 - 图4%5D%20%5C%5C%20%0A%3D%26%5Csigma(%5Cgcd(i%2Cj))%0A%5Cend%7Baligned%7D%0A#card=math&code=%5Clarge%0A%5Cbegin%7Baligned%7D%0Af%7Bij%7D%20%3D%26%20%5Csum%7Bd%3D1%7D%5E%7Bn%7D%20%5Bd%7Ci%5D%5Bd%7Cj%5D%20%5C%5C%0A%3D%26%5Csum_%7Bd%3D1%7D%5E%7Bn%7D%20%5Bd%7C%5Cgcd%28i%2Cj%29%5D%20%5C%5C%20%0A%3D%26%5Csigma%28%5Cgcd%28i%2Cj%29%29%0A%5Cend%7Baligned%7D%0A)

    容易发现 P3312 [SDOI2014]数表 - 图5 函数可以通过预处理获得
    先不考虑 P3312 [SDOI2014]数表 - 图6 的限制:

    P3312 [SDOI2014]数表 - 图7)%20%20%5C%5C%0A%3D%26%5Csum%7Bd%3D1%7D%5E%7Bn%7D%5Csum%7Bi%3D1%7D%5En%5Csum%7Bj%3D1%7D%5E%7Bn%7D%5Csigma(d)%5B%5Cgcd(i%2Cj)%3Dd%5D%20%5C%5C%0A%3D%26%5Csum%7Bd%3D1%7D%5E%7Bn%7D%5Csum%7Bi%3D1%7D%5En%5Csum%7Bj%3D1%7D%5E%7Bn%7D%5Csum%7Bd%7Ct%7D%5Cmu(%5Cdfrac%7Bt%7D%7Bd%7D)%5Csigma(d)%5Bt%7C%5Cgcd(i%2Cj)%5D%20%5C%5C%0A%3D%26%5Csum%7Bd%3D1%7D%5E%7Bn%7D%5Csum%7Bi%3D1%7D%5En%5Csum%7Bj%3D1%7D%5E%7Bn%7D%5Csum%7Bd%7Ct%7D%5Cmu(%5Cdfrac%7Bt%7D%7Bd%7D)%5Csigma(d)%5Bt%7Ci%5D%5Bt%7Cj%5D%20%5C%5C%0A%3D%26%5Csum%7Bt%3D1%7D%5E%7Bn%7D%5Csum%7Bi%3D1%7D%5En%5Bt%7Ci%5D%5Csum%7Bj%3D1%7D%5E%7Bn%7D%5Bt%7Cj%5D%5Csum%7Bd%7Ct%7D%5Cmu(%5Cdfrac%7Bt%7D%7Bd%7D)%5Csigma(d)%20%5C%5C%0A%5Cend%7Baligned%7D%0A#card=math&code=%5Clarge%0A%5Cbegin%7Baligned%7D%0A%26%5Csum%7Bi%3D1%7D%5En%5Csum%7Bj%3D1%7D%5E%7Bn%7D%5Csigma%28%5Cgcd%28i%2Cj%29%29%20%20%5C%5C%0A%3D%26%5Csum%7Bd%3D1%7D%5E%7Bn%7D%5Csum%7Bi%3D1%7D%5En%5Csum%7Bj%3D1%7D%5E%7Bn%7D%5Csigma%28d%29%5B%5Cgcd%28i%2Cj%29%3Dd%5D%20%5C%5C%0A%3D%26%5Csum%7Bd%3D1%7D%5E%7Bn%7D%5Csum%7Bi%3D1%7D%5En%5Csum%7Bj%3D1%7D%5E%7Bn%7D%5Csum%7Bd%7Ct%7D%5Cmu%28%5Cdfrac%7Bt%7D%7Bd%7D%29%5Csigma%28d%29%5Bt%7C%5Cgcd%28i%2Cj%29%5D%20%5C%5C%0A%3D%26%5Csum%7Bd%3D1%7D%5E%7Bn%7D%5Csum%7Bi%3D1%7D%5En%5Csum%7Bj%3D1%7D%5E%7Bn%7D%5Csum%7Bd%7Ct%7D%5Cmu%28%5Cdfrac%7Bt%7D%7Bd%7D%29%5Csigma%28d%29%5Bt%7Ci%5D%5Bt%7Cj%5D%20%5C%5C%0A%3D%26%5Csum%7Bt%3D1%7D%5E%7Bn%7D%5Csum%7Bi%3D1%7D%5En%5Bt%7Ci%5D%5Csum%7Bj%3D1%7D%5E%7Bn%7D%5Bt%7Cj%5D%5Csum%7Bd%7Ct%7D%5Cmu%28%5Cdfrac%7Bt%7D%7Bd%7D%29%5Csigma%28d%29%20%5C%5C%0A%5Cend%7Baligned%7D%0A&height=322&width=336)

    上述公式的 P3312 [SDOI2014]数表 - 图8 代表的是一个终值,具体是 P3312 [SDOI2014]数表 - 图9 需要具体讨论。

    P3312 [SDOI2014]数表 - 图10%20%3D%20%5Csum%7Bi%3D1%7D%5E%7Bn%7D%20%5Bt%7Ci%5D#card=math&code=f%28t%29%20%3D%20%5Csum%7Bi%3D1%7D%5E%7Bn%7D%20%5Bt%7Ci%5D),则 P3312 [SDOI2014]数表 - 图11%20%3D%20%5Clfloor%5Cdfrac%7Bn%7D%7Bt%7D%5Crfloor#card=math&code=f%28t%29%20%3D%20%5Clfloor%5Cdfrac%7Bn%7D%7Bt%7D%5Crfloor)
    原式可以化为:

    P3312 [SDOI2014]数表 - 图12%5Csigma(d)%20%0A#card=math&code=%5Clarge%0A%5Csum%7Bt%3D1%7D%5E%7Bn%7D%5Clfloor%5Cdfrac%7Bn%7D%7Bt%7D%5Crfloor%20%5Clfloor%20%5Cdfrac%7Bm%7Dt%7B%7D%5Crfloor%5Csum%7Bd%7Ct%7D%5Cmu%28%5Cdfrac%7Bt%7D%7Bd%7D%29%5Csigma%28d%29%20%0A)

    P3312 [SDOI2014]数表 - 图13%20%3D%20%5Csum%7Bd%7Ct%7D%5Cmu(%5Cdfrac%7Bt%7D%7Bd%7D)%5Csigma(d)#card=math&code=g%28t%29%20%3D%20%5Csum%7Bd%7Ct%7D%5Cmu%28%5Cdfrac%7Bt%7D%7Bd%7D%29%5Csigma%28d%29)(P3312 [SDOI2014]数表 - 图14P3312 [SDOI2014]数表 - 图15 可以容易筛出)

    加入限制 P3312 [SDOI2014]数表 - 图16

    P3312 [SDOI2014]数表 - 图17%20%3D%20%5Csum%7Bd%7Ct%7D%5Cmu(%5Cdfrac%7Bt%7D%7Bd%7D)%5Csigma(d)%20(%5Csigma(d)%5Cge%20a)%0A#card=math&code=%5Clarge%0Ag%28t%29%20%3D%20%5Csum%7Bd%7Ct%7D%5Cmu%28%5Cdfrac%7Bt%7D%7Bd%7D%29%5Csigma%28d%29%20%28%5Csigma%28d%29%5Cge%20a%29%0A)

    1. // Sigma 为排序之后的除数函数映射
    2. // lst 为上一次加入的位置
    3. for(int i = lst;i; --i){
    4. d = Sigma[i];
    5. if(d < a) break;
    6. for(int j=1;j * d <= N;++j)
    7. G[i * j] = d * Mu[j];
    8. }

    考虑将询问离线,按照 P3312 [SDOI2014]数表 - 图18 排序,这样我们就可以逐次求出P3312 [SDOI2014]数表 - 图19 函数。
    代回原式数论分块即可。