1.DSL查询文档
1.1.DSL查询分类
1)查询所有:查出所有数据,一般测试用。例如:match_all
2)全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:
- match_query
- multi_match_query
3)精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段。例如:
- ids
- range —》范围查找
- term —》 精确查找
4)地理(geo)查询:根据经纬度查询。例如:
- geo_distance
- geo_bounding_box
5)复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如:
- bool
- function_score
语法: 举例:
GET /indexName/_search // 查询所有
{ GET /indexName/_search
“query”: { {
“查询类型”: { “query”: {
“查询条件”: “条件值” “match_all”: {
} }
} }
} }
1.2.全文检索查询
基本语法
常见的全文检索查询包括:
- match查询:单字段查询
- multi_match查询:多字段查询,任意一个字段符合条件就算符合查询条件
match查询语法: mulit_match语法如下:
GET /indexName/_search GET /indexName/_search
{ {
“query”: { “query”: {
“match”: { “multi_match”: {
“FIELD”: “TEXT” “query”: “TEXT”,
} “fields”: [“FIELD1”, “ FIELD12”]
} }
} }
}
示例:
1.3.精准查询
精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词。常见的有:
- term:根据词条精确值查询
-
1.3.1.term查询
因为精确查询的字段搜是不分词的字段,因此查询的条件也必须是不分词的词条。查询时,用户输入的内容跟自动值完全匹配时才认为符合条件。如果用户输入的内容过多,反而搜索不到数据。
语法:
// term查询
GET /indexName/_search
{
“query”: {
“term”: {
“FIELD”: {
“value”: “VALUE”
}
}
}
}
示例
1.3.2.range查询
范围查询,一般应用在对数值类型做范围过滤的时候。比如做价格范围过滤。
语法:
// range查询
GET /indexName/_search
{
“query”: {
“range”: {
“FIELD”: {
“gte”: 10, // 这里的gte代表大于等于,gt则代表大于
“lte”: 20 // lte代表小于等于,lt则代表小于
}
}
}
}
示例:
1.4.地理坐标查询
1.4.1.矩形范围查询
矩形范围查询,也就是geo_bounding_box查询,查询坐标落在某个矩形范围的所有文档
查询时,需要指定矩形的左上、右下两个点的坐标,然后画出一个矩形,落在该矩形内的都是符合条件的点。
语法
GET hotel/_search
{
“query”:{
“geo_bounding_box”:{
“location”:{
“top_left”: {
“lat”: 31.1,
“lon”: 121.5
},
“bottom_right”:{
“lat”: 30.9,
“lon”: 121.7
}
}
}
}
}1.4.2.附近查询
附近查询,也叫做距离查询(geo_distance):查询到指定中心点小于某个距离值的所有文档。
换句话来说,在地图上找一个点作为圆心,以指定距离为半径,画一个圆,落在圆内的坐标都算符合条件
语法:
// geo_distance 查询
GET /indexName/_search
{
“query”: {
“geo_distance”: {
“distance”: “15km”, // 半径
“FIELD”: “31.21,121.5” // 圆心
}
}
}1.5.复合查询
复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:
fuction score:算分函数查询,可以控制文档相关性算分,控制文档排名
- bool query:布尔查询,利用逻辑关系组合多个其它的查询,实现复杂搜索
小结:elasticsearch会根据词条和文档的相关度做打分,算法由两种:
原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)
过滤条件:filter部分,符合该条件的文档才会重新算分
算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数
- weight:函数结果是常量
- field_value_factor:以文档中的某个字段值作为函数结果
- random_score:以随机数作为函数结果
- script_score:自定义算分函数算法
运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:
- - multiply:相乘
- - replace:用function score替换query score
- - 其它,例如:sum、avg、max、min
function score的运行流程如下:
- 1)根据原始条件查询搜索文档,并且计算相关性算分,称为原始算分(query score)
- 2)根据过滤条件,过滤文档
- 3)符合过滤条件的文档,基于算分函数运算,得到函数算分(function score)
- 4)将原始算分(query score)和函数算分(function score)基于运算模式做运算,得到最终结果,作为相关性算分。
其中的关键点是:
- 过滤条件:决定哪些文档的算分被修改
- 算分函数:决定函数算分的算法
- 运算模式:决定最终算分结果
2.搜索结果处理
2.1.排序
lasticsearch默认是根据相关度算分(_score)来排序,但是也支持自定义方式对搜索结果排序。可以排序字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等。2.1.1.普通字段排序
keyword、数值、日期类型排序的语法基本一致。
语法:
GET /indexName/_search
{
“query”: {
“match_all”: {}
},
“sort”: [
{
“FIELD”: “desc” // 排序字段、排序方式ASC、DESC
}
]
}2.1.2.地理坐标排序
语法:
GET /indexName/_search
{
“query”: {
“match_all”: {}
},
“sort”: [
{
“_geo_distance” : {
“FIELD” : “纬度,经度”, // 文档中geo_point类型的字段名、目标坐标点
“order” : “asc”, // 排序方式
“unit” : “km” // 排序的距离单位
}
}
]
}
这个查询的含义是:
- 指定一个坐标,作为目标点
- 计算每一个文档中,指定字段(必须是geo_point类型)的坐标 到目标点的距离是多少
- 根据距离排序
2.2.分页
elasticsearch 默认情况下只返回top10的数据。而如果要查询更多数据就需要修改分页参数了。elasticsearch中通过修改from、size参数来控制要返回的分页结果:
1)from:从第几个文档开始
2)size:总共查询几个文档
类似于mysql中的limit ?, ?
2.2.1.基本的分页
分页的基本语法:
GET /hotel/_search
{
“query”: {
“match_all”: {}
},
“from”: 0, // 分页开始的位置,默认为0
“size”: 10, // 期望获取的文档总数
“sort”: [
{“price”: “asc”}
]
}2.2.2.深度分页问题
针对深度分页,ES提供了两种解决方案:
1)search after:分页时需要排序,原理是从上一次的排序值开始,查询下一页数据。官方推荐使用的方式。
2)scroll:原理将排序后的文档id形成快照,保存在内存。官方已经不推荐使用。2.2.3.小结
分页查询的常见实现方案以及优缺点:
from + size:
优点:支持随机翻页
缺点:深度分页问题,默认查询上限(from + size)是10000
场景:百度、京东、谷歌、淘宝这样的随机翻页搜索
after search:
优点:没有查询上限(单次查询的size不超过10000)
缺点:只能向后逐页查询,不支持随机翻页
场景:没有随机翻页需求的搜索,例如手机向下滚动翻页
scroll:
优点:没有查询上限(单次查询的size不超过10000)
缺点:会有额外内存消耗,并且搜索结果是非实时的
场景:海量数据的获取和迁移。从ES7.1开始不推荐,建议用 after search方案。2.3.高亮
高亮显示的实现分为两步:
1)给文档中的所有关键字都添加一个标签,例如标签
2)页面给标签编写CSS样式2.3.2.实现高亮
高亮的语法:
GET /hotel/_search
{
“query”: {
“match”: {
“FIELD”: “TEXT” // 查询条件,高亮一定要使用全文检索查询
}
},
“highlight”: {
“fields”: { // 指定要高亮的字段
“FIELD”: {
“pre_tags”: ““, // 用来标记高亮字段的前置标签
“post_tags”: ““ // 用来标记高亮字段的后置标签
}
}
}
}
注意:
1)高亮是对关键字高亮,因此搜索条件必须带有关键字,而不能是范围这样的查询。
2)默认情况下,高亮的字段,必须与搜索指定的字段一致,否则无法高亮
3)如果要对非搜索字段高亮,则需要添加一个属性:required_field_match=false2.4.总结
- 查询的DSL是一个大的JSON对象,包含下列属性:
- query:查询条件
- from和size:分页条件
- sort:排序条件
- highlight:高亮条件
3.RestClient查询文档
基本步骤包括:
1)准备Request对象
2)准备请求参数
3)发起请求
4)解析响应
lasticsearch返回的结果是一个JSON字符串,结构包含:
hits:命中的结果
- total:总条数,其中的value是具体的总条数值
- max_score:所有结果中得分最高的文档的相关性算分
- hits:搜索结果的文档数组,其中的每个文档都是一个json对象
- _source:文档中的原始数据,也是json对象
因此,我们解析响应结果,就是逐层解析JSON字符串,流程如下:
SearchHits:通过response.getHits()获取,就是JSON中的最外层的hits,代表命中的结果
- SearchHits#getTotalHits().value:获取总条数信息
- SearchHits#getHits():获取SearchHit数组,也就是文档数组
- 创建SearchRequest对象
- 准备Request.source(),也就是DSL。① QueryBuilders来构建查询条件② 传入Request.source() 的 query() 方法
- 发送请求,得到结果
- 解析结果(参考JSON结果,从外到内,逐层解析
3.2.match查询
全文检索的match和multi_match查询与match_all的API基本一致。差别是查询条件,也就是query的部分
3.3.精确查询
精确查询主要是两者:
1)term:词条精确匹配
2)range:范围查询3.4.布尔查询
布尔查询是用must、must_not、filter等方式组合其它查询
3.5.排序、分页
3.6.高亮
高亮的代码与之前代码差异较大,有两点:
- 查询的DSL:其中除了查询条件,还需要添加高亮条件,同样是与query同级。
- 结果解析:结果除了要解析_source文档数据,还要解析高亮结果