1.概念
1.补全api主要分为四类
- Term Suggester(纠错补全,输入错误的情况下补全正确的单词)
- Phrase Suggester(自动补全短语,输入一个单词补全整个短语)
- Completion Suggester(完成补全单词,输出如前半部分,补全整个单词)
- Context Suggester(上下文补全)
整体效果类似百度搜索,如图:
2.Term Suggester(纠错补全)
2.1.api
1.建立索引
PUT /book4
{
"mappings": {
"english": {
"properties": {
"passage": {
"type": "text"
}
}
}
}
}
2.2.插入数据
curl -H "Content-Type: application/json" -XPOST 'http:localhost:9200/_bulk' -d'
{ "index" : { "_index" : "book4", "_type" : "english" } }
{ "passage": "Lucene is cool"}
{ "index" : { "_index" : "book4", "_type" : "english" } }
{ "passage": "Elasticsearch builds on top of lucene"}
{ "index" : { "_index" : "book4", "_type" : "english" } }
{ "passage": "Elasticsearch rocks"}
{ "index" : { "_index" : "book4", "_type" : "english" } }
{ "passage": "Elastic is the company behind ELK stack"}
{ "index" : { "_index" : "book4", "_type" : "english" } }
{ "passage": "elk rocks"}
{ "index" : { "_index" : "book4", "_type" : "english" } }
{ "passage": "elasticsearch is rock solid"}
'
2.3.看下储存的分词有哪些
post /_analyze
{
"text": [
"Lucene is cool",
"Elasticsearch builds on top of lucene",
"Elasticsearch rocks",
"Elastic is the company behind ELK stack",
"elk rocks",
"elasticsearch is rock solid"
]
}
结果:
{
"tokens": [
{
"token": "lucene",
"start_offset": 0,
"end_offset": 6,
"type": "<ALPHANUM>",
"position": 0
},
{
"token": "is",
"start_offset": 7,
"end_offset": 9,
"type": "<ALPHANUM>",
"position": 1
},
{
"token": "cool",
"start_offset": 10,
"end_offset": 14,
"type": "<ALPHANUM>",
"position": 2
},
{
"token": "elasticsearch",
"start_offset": 15,
"end_offset": 28,
"type": "<ALPHANUM>",
"position": 103
},
{
"token": "builds",
"start_offset": 29,
"end_offset": 35,
"type": "<ALPHANUM>",
"position": 104
},
{
"token": "on",
"start_offset": 36,
"end_offset": 38,
"type": "<ALPHANUM>",
"position": 105
},
{
"token": "top",
"start_offset": 39,
"end_offset": 42,
"type": "<ALPHANUM>",
"position": 106
},
{
"token": "of",
"start_offset": 43,
"end_offset": 45,
"type": "<ALPHANUM>",
"position": 107
},
{
"token": "lucene",
"start_offset": 46,
"end_offset": 52,
"type": "<ALPHANUM>",
"position": 108
},
{
"token": "elasticsearch",
"start_offset": 53,
"end_offset": 66,
"type": "<ALPHANUM>",
"position": 209
},
{
"token": "rocks",
"start_offset": 67,
"end_offset": 72,
"type": "<ALPHANUM>",
"position": 210
},
{
"token": "elastic",
"start_offset": 73,
"end_offset": 80,
"type": "<ALPHANUM>",
"position": 311
},
{
"token": "is",
"start_offset": 81,
"end_offset": 83,
"type": "<ALPHANUM>",
"position": 312
},
{
"token": "the",
"start_offset": 84,
"end_offset": 87,
"type": "<ALPHANUM>",
"position": 313
},
{
"token": "company",
"start_offset": 88,
"end_offset": 95,
"type": "<ALPHANUM>",
"position": 314
},
{
"token": "behind",
"start_offset": 96,
"end_offset": 102,
"type": "<ALPHANUM>",
"position": 315
},
{
"token": "elk",
"start_offset": 103,
"end_offset": 106,
"type": "<ALPHANUM>",
"position": 316
},
{
"token": "stack",
"start_offset": 107,
"end_offset": 112,
"type": "<ALPHANUM>",
"position": 317
},
{
"token": "elk",
"start_offset": 113,
"end_offset": 116,
"type": "<ALPHANUM>",
"position": 418
},
{
"token": "rocks",
"start_offset": 117,
"end_offset": 122,
"type": "<ALPHANUM>",
"position": 419
},
{
"token": "elasticsearch",
"start_offset": 123,
"end_offset": 136,
"type": "<ALPHANUM>",
"position": 520
},
{
"token": "is",
"start_offset": 137,
"end_offset": 139,
"type": "<ALPHANUM>",
"position": 521
},
{
"token": "rock",
"start_offset": 140,
"end_offset": 144,
"type": "<ALPHANUM>",
"position": 522
},
{
"token": "solid",
"start_offset": 145,
"end_offset": 150,
"type": "<ALPHANUM>",
"position": 523
}
]
}
2.4.term suggest api(搜索单个字段)
搜索下试试,给出错误单词Elasticsearaach
POST /book4/_search
{
"suggest" : {
"my-suggestion" : {
"text" : "Elasticsearaach",
"term" : {
"field" : "passage",
"suggest_mode": "popular"
}
}
}
}
response:
{
"took": 26,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 0,
"max_score": 0,
"hits": []
},
"suggest": {
"my-suggestion": [
{
"text": "elasticsearaach",
"offset": 0,
"length": 15,
"options": [
{
"text": "elasticsearch",
"score": 0.84615386,
"freq": 3
}
]
}
]
}
}
2.5.搜索多个字段分别给出提示:
POST _search
{
"suggest": {
"my-suggest-1" : {
"text" : "tring out Elasticsearch",
"term" : {
"field" : "message"
}
},
"my-suggest-2" : {
"text" : "kmichy",
"term" : {
"field" : "user"
}
}
}
}
该term
建议者提出基于编辑距离条款。在建议术语之前分析提供的建议文本。建议的术语是根据分析的建议文本标记提供的。该term
建议者不走查询到的是是的请求部分。
常见建议选项:
text |
建议文字。建议文本是必需的选项,需要全局或按建议设置。 |
---|---|
field |
从中获取候选建议的字段。这是一个必需的选项,需要全局设置或根据建议设置。 |
analyzer |
用于分析建议文本的分析器。默认为建议字段的搜索分析器。 |
size |
每个建议文本标记返回的最大更正。 |
sort |
定义如何根据建议文本术语对建议进行排序。两个可能的值: - score :先按分数排序,然后按文档频率排序,再按术语本身排序。- frequency :首先按文档频率排序,然后按相似性分数排序,然后按术语本身排序。 |
suggest_mode |
建议模式控制包含哪些建议或控制建议的文本术语,建议。可以指定三个可能的值: - missing :仅提供不在索引词典中,但是在原文档中的词。这是默认值。- popular :仅提供在索引词典中出现的词语。- always :索引词典中出没出现的词语都要给出建议。 |
其他术语建议选项:
lowercase_terms |
在文本分析之后,建议文本术语小写。 |
---|---|
max_edits |
最大编辑距离候选建议可以具有以便被视为建议。只能是介于1和2之间的值。任何其他值都会导致抛出错误的请求错误。默认为2。 |
prefix_length |
必须匹配的最小前缀字符的数量才是候选建议。默认为1.增加此数字可提高拼写检查性能。通常拼写错误不会出现在术语的开头。(旧名“prefix_len”已弃用) |
min_word_length |
建议文本术语必须具有的最小长度才能包含在内。默认为4.(旧名称“min_word_len”已弃用) |
shard_size |
设置从每个单独分片中检索的最大建议数。在减少阶段,仅根据size 选项返回前N个建议。默认为该 size 选项。将此值设置为高于该值的值size 可能非常有用,以便以性能为代价获得更准确的拼写更正文档频率。由于术语在分片之间被划分,因此拼写校正频率的分片级文档可能不准确。增加这些将使这些文档频率更精确。 |
max_inspections |
用于乘以的因子, shards_size 以便在碎片级别上检查更多候选拼写更正。可以以性能为代价提高准确性。默认为5。 |
min_doc_freq |
建议应出现的文档数量的最小阈值。可以指定为绝对数字或文档数量的相对百分比。这可以仅通过建议高频项来提高质量。默认为0f且未启用。如果指定的值大于1,则该数字不能是小数。分片级文档频率用于此选项。 |
max_term_freq |
建议文本令牌可以存在的文档数量的最大阈值,以便包括在内。可以是表示文档频率的相对百分比数(例如0.4)或绝对数。如果指定的值大于1,则不能指定小数。默认为0.01f。这可用于排除高频术语的拼写检查。高频术语通常拼写正确,这也提高了拼写检查的性能。分片级文档频率用于此选项。 |
string_distance |
用于比较类似建议术语的字符串距离实现。可以指定五个可能的值: internal - 默认值基于damerau_levenshtein,但高度优化用于比较索引中术语的字符串距离。damerau_levenshtein - 基于Damerau-Levenshtein算法的字符串距离算法。levenshtein - 基于Levenshtein编辑距离算法的字符串距离算法。 jaro_winkler - 基于Jaro-Winkler算法的字符串距离算法。 ngram - 基于字符n-gram的字符串距离算法。 |
3.phase sguesster:短语纠错
phrase 短语建议,在term的基础上,会考量多个term之间的关系,比如是否同时出现在索引的原文里,相邻程度,以及词频等
示例1:
POST book4/_search
{
"suggest" : {
"myss":{
"text": "Elasticsearch rock",
"phrase": {
"field": "passage"
}
}
}
}
{
"took": 11,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 0,
"max_score": 0,
"hits": []
},
"suggest": {
"myss": [
{
"text": "Elasticsearch rock",
"offset": 0,
"length": 18,
"options": [
{
"text": "elasticsearch rocks",
"score": 0.3467123
}
]
}
]
}
}
4. Completion suggester 自动补全
针对自动补全场景而设计的建议器。此场景下用户每输入一个字符的时候,就需要即时发送一次查询请求到后端查找匹配项,在用户输入速度较高的情况下对后端响应速度要求比较苛刻。因此实现上它和前面两个Suggester采用了不同的数据结构,索引并非通过倒排来完成,而是将analyze过的数据编码成FST和索引一起存放。对于一个open状态的索引,FST会被ES整个装载到内存里的,进行前缀查找速度极快。但是FST只能用于前缀查找,这也是Completion Suggester的局限所在。
1.建立索引
POST /book5
{
"mappings": {
"music" : {
"properties" : {
"suggest" : {
"type" : "completion"
},
"title" : {
"type": "keyword"
}
}
}
}
}
插入数据:
POST /book5
{
"mappings": {
"music" : {
"properties" : {
"suggest" : {
"type" : "completion"
},
"title" : {
"type": "keyword"
}
}
}
}
}
Input 指定输入词 Weight 指定排序值(可选)
PUT music/music/5nupmmUBYLvVFwGWH3cu?refresh
{
"suggest" : {
"input": [ "test", "book" ],
"weight" : 34
}
}
指定不同的排序值:
PUT music/_doc/6Hu2mmUBYLvVFwGWxXef?refresh
{
"suggest" : [
{
"input": "test",
"weight" : 10
},
{
"input": "good",
"weight" : 3
}
]}
示例1:查询建议根据前缀查询
POST book5/_search?pretty
{
"suggest": {
"song-suggest" : {
"prefix" : "te",
"completion" : {
"field" : "suggest"
}
}
}
}
{
"took": 8,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 0,
"max_score": 0,
"hits": []
},
"suggest": {
"song-suggest": [
{
"text": "te",
"offset": 0,
"length": 2,
"options": [
{
"text": "test my book1",
"_index": "book5",
"_type": "music",
"_id": "6Xu6mmUBYLvVFwGWpXeL",
"_score": 1,
"_source": {
"suggest": "test my book1"
}
},
{
"text": "test my book1",
"_index": "book5",
"_type": "music",
"_id": "6nu8mmUBYLvVFwGWSndC",
"_score": 1,
"_source": {
"suggest": "test my book1"
}
},
{
"text": "test my book1 english",
"_index": "book5",
"_type": "music",
"_id": "63u8mmUBYLvVFwGWZHdC",
"_score": 1,
"_source": {
"suggest": "test my book1 english"
}
}
]
}
]
}
}
示例2:对建议查询结果去重
{
"suggest": {
"song-suggest" : {
"prefix" : "te",
"completion" : {
"field" : "suggest" ,
"skip_duplicates": true
}
}
}
}
示例3:查询建议文档存储短语
POST /book5/music/63u8mmUBYLvVFwGWZHdC?refresh
{
"suggest" : {
"input": [ "book1 english", "test english" ],
"weight" : 20
}
}
查询:
POST book5/_search?pretty
{
"suggest": {
"song-suggest" : {
"prefix" : "test",
"completion" : {
"field" : "suggest" ,
"skip_duplicates": true
}
}
}
}
结果:
{
"took": 7,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 0,
"max_score": 0,
"hits": []
},
"suggest": {
"song-suggest": [
{
"text": "test",
"offset": 0,
"length": 4,
"options": [
{
"text": "test english",
"_index": "book5",
"_type": "music",
"_id": "63u8mmUBYLvVFwGWZHdC",
"_score": 20,
"_source": {
"suggest": {
"input": [
"book1 english",
"test english"
],
"weight": 20
}
}
},
{
"text": "test my book1",
"_index": "book5",
"_type": "music",
"_id": "6Xu6mmUBYLvVFwGWpXeL",
"_score": 1,
"_source": {
"suggest": "test my book1"
}
}
]
}
]
}
}
5. 总结和建议
因此用好Completion Sugester并不是一件容易的事,实际应用开发过程中,需要根据数据特性和业务需要,灵活搭配analyzer和mapping参数,反复调试才可能获得理想的补全效果。
回到篇首搜索框的补全/纠错功能,如果用ES怎么实现呢?我能想到的一个的实现方式:
- 在用户刚开始输入的过程中,使用Completion Suggester进行关键词前缀匹配,刚开始匹配项会比较多,随着用户输入字符增多,匹配项越来越少。如果用户输入比较精准,可能Completion Suggester的结果已经够好,用户已经可以看到理想的备选项了。
- 如果Completion Suggester已经到了零匹配,那么可以猜测是否用户有输入错误,这时候可以尝试一下Phrase Suggester。
如果Phrase Suggester没有找到任何option,开始尝试term Suggester。
精准程度上(Precision)看: Completion > Phrase > term, 而召回率上(Recall)则反之。从性能上看,Completion Suggester是最快的,如果能满足业务需求,只用Completion Suggester做前缀匹配是最理想的。 Phrase和Term由于是做倒排索引的搜索,相比较而言性能应该要低不少,应尽量控制suggester用到的索引的数据量,最理想的状况是经过一定时间预热后,索引可以全量map到内存。