这里是一个快速入门的教程, 它展示了让你快速在示例数据集上进行二元分类任务时的 xgboost 的代码片段.
Links to Helpful Other Resources
- 请参阅 安装指南 以了解如何去安装 xgboost.
- 请参阅 入门指引 以了解有关使用 xgboost 的各种技巧.
- 请参阅 学习教程 以了解有关特定任务的教程.
- 请参阅 通过例子来学习使用 XGBoost 以了解更多代码示例.
Python
import xgboost as xgb# 读取数据dtrain = xgb.DMatrix('demo/data/agaricus.txt.train')dtest = xgb.DMatrix('demo/data/agaricus.txt.test')# 通过 map 指定参数param = {'max_depth':2, 'eta':1, 'silent':1, 'objective':'binary:logistic' }num_round = 2bst = xgb.train(param, dtrain, num_round)# 预测preds = bst.predict(dtest)
R
# 加载数据data(agaricus.train, package='xgboost')data(agaricus.test, package='xgboost')train <- agaricus.traintest <- agaricus.test# 拟合模型bst <- xgboost(data = train$data, label = train$label, max.depth = 2, eta = 1, nround = 2,nthread = 2, objective = "binary:logistic")# 预测pred <- predict(bst, test$data)
Julia
using XGBoost# 读取数据train_X, train_Y = readlibsvm("demo/data/agaricus.txt.train", (6513, 126))test_X, test_Y = readlibsvm("demo/data/agaricus.txt.test", (1611, 126))# 拟合模型num_round = 2bst = xgboost(train_X, num_round, label=train_Y, eta=1, max_depth=2)# 预测pred = predict(bst, test_X)
Scala
import ml.dmlc.xgboost4j.scala.DMatriximport ml.dmlc.xgboost4j.scala.XGBoostobject XGBoostScalaExample {def main(args: Array[String]) {// 读取 xgboost/demo/data 目录中可用的训练数据val trainData =new DMatrix("/path/to/agaricus.txt.train")// 定义参数val paramMap = List("eta" -> 0.1,"max_depth" -> 2,"objective" -> "binary:logistic").toMap// 迭代次数val round = 2// train the modelval model = XGBoost.train(trainData, paramMap, round)// 预测val predTrain = model.predict(trainData)// 保存模型至文件model.saveModel("/local/path/to/model")}}
