《K-12科学教育框架 》
Framework for K–12 Science Education
主译:张三
副主译:李四
总结 SUMMARY
Science, engineering, and technology permeate nearly every facet of modern life, and they also hold the key to meeting many of humanity’s most pressing current and future challenges. Yet too few U.S. workers have strong backgrounds in these fields, and many people lack even fundamental knowledge of them. This national trend has created a widespread call for a new approach to K-12 science education in the United States.
科学、工程和技术几乎渗透到现代生活的方方面面,它们也是应对人类当前和未来许多最紧迫挑战的关键。然而,在这些领域拥有深厚背景的美国工人太少,许多人甚至缺乏基本知识。这一全国性趋势在美国引发了对K-12科学教育新方法的呼声。
The Committee on a Conceptual Framework for New K-12 Science Education Standards was charged with developing a framework that articulates a broad set of expectations for students in science. The overarching goal of our framework for K-12 science education is to ensure that by the end of 12th grade, all students have some appreciation of the beauty and wonder of science; possess sufficient knowledge of science and engineering to engage in public discussions on related issues; are careful consumers of scientific and technological information related to their everyday lives; are able to continue to learn about science outside school; and have the skills to enter careers of their choice, including (but not limited to) careers in science, engineering, and technology.
新K-12科学教育标准概念框架委员会”负责制定一个框架,阐明对科学学习的广泛期望。我们的K-12科学教育框架的总体目标是确保在12年级结束时,所有学生都对科学的美丽和神奇有一定的欣赏力;具备足够的科学和工程知识,能够就相关问题进行公开讨论;是与日常生活相关的科技信息的谨慎消费者;能够在校外继续学习科学知识;并且有能力进入他们选择的职业,包括(但不限于)科学、工程和技术领域。
Currently, K-12 science education in the United States fails to achieve these outcomes, in part because it is not organized systematically across multiple years of school, emphasizes discrete facts with a focus on breadth over depth, and does not provide students with engaging opportunities to experience how science is actually done. The framework is designed to directly address and overcome these weaknesses.
目前,美国的K-12科学教育未能取得这些成果,部分原因是它没有在多年的学校中系统地组织起来,强调分散的事实,侧重于广度而非深度,并且没有为学生提供有吸引力的机会来体验科学的实际运作方式。该框架旨在直接面对和克服这些弱点。
The framework is based on a rich and growing body of research on teaching and learning in science, as well as on nearly two decades of efforts to define foundational knowledge and skills for K-12 science and engineering. From this work, the committee concludes that K-12 science and engineering education should focus on a limited number of disciplinary core ideas and crosscutting concepts, be designed so that students continually build on and revise their knowledge and abilities over multiple years, and support the integration of such knowledge and abilities with the practices needed to engage in scientific inquiry and engineering design.
该框架基于一系列丰富且不断增长的教学研究科学学习,以及近20年来为K-12科学与工程定义基础知识和技能的努力。从这项工作中,委员会得出结论,K-12科学与工程教育应聚焦于有限数量的学科核心概念(disciplinary core ideas)和跨学科概念(crosscutting concepts),(相关名词的翻译解释见文末)其设计应使学生在多年的时间里不断积累和修改自己的知识和能力,并支持将这些知识和能力与从事科学研究和工程设计所需的实践相结合。
The committee recommends that science education in grades K-12 be built around three major dimensions (see Box S-1 for details of each dimension). These dimensions are:
委员会建议K-12年级的科学教育围绕三个主要维度展开(每个维度的详细信息见页末S-1)。这些维度是:
• 科学和工程实践Scientific and engineering practices
• 跨学科概念,通过其在各个领域的共通应用,将科学和工程的研究统一起来
Crosscutting concepts that unify the study of science and engineering through their common application across fields
• 四个学科领域的核心概念:物理科学;生命科学;地球和空间科学;以及工程、技术和科学应用Core ideas in four disciplinary areas: physical sciences; life sciences; earth
and space sciences; and engineering, technology, and applications of science
To support students’ meaningful learning in science and engineering, all three dimensions need to be integrated into standards, curriculum, instruction, and assessment. Engineering and technology are featured alongside the natural sciences (physical sciences, life sciences, and earth and space sciences) for two critical reasons: (1) to reflect the importance of understanding the human-built world and (2) to recognize the value of better integrating the teaching and learning of science, engineering, and technology.
为了支持学生在科学和工程领域有意义的学习,所有三个维度都需要整合到标准、课程、教学和评估中。工程和技术与自然科学(物理科学、生命科学、地球和空间科学)并驾齐驱,有两个关键原因:(1)反映理解人类建造世界的重要性;(2)认识到更好地整合科学、工程和和技术的教与学具有重要价值。
The broad set of expectations for students articulated in the framework is intended to guide the development of new standards that in turn guide revisions to science-related curriculum, instruction, assessment, and professional development for educators. A coherent and consistent approach throughout grades K-12 is key to realizing the vision for science and engineering education embodied in the framework: that students, over multiple years of school, actively engage in science and engineering practices and apply crosscutting concepts to deepen their understanding of each field’s disciplinary core ideas.
该框架中阐述的对学生的广泛期望旨在指导新标准的制定,进而指导修订与科学相关的课程、教学、评估和教育工作者的专业发展。在整个K-12年级采用连贯一致的方法是实现该框架中体现的科学和工程教育愿景的关键:学生在多年的学习中,积极参与科学和工程实践,应用交叉概念,加深对各个领域学科核心理念的理解。
The framework represents the first step in a process that should inform state-level decisions and provide a research-grounded basis for improving science teaching and learning across the country. It is intended to guide standards developers, curriculum designers, assessment developers, state and district science administrators, professionals responsible for science teacher education, and science educators working in informal settings.
该框架代表了这一过程的第一步,为州一级的决策提供信息,并为改善全国的科学教学提供基于研究的基础。它旨在指导标准制定者、课程设计者、评估制定者、州和地区科学管理者、负责科学教师培训的专业人士以及在非正式科学环境中工作的科学教育者。
The report also identifies the challenges inherent in aligning the components of K-12 science education with this new vision for science and engineering education, provides recommendations for standards development, and lays out a research agenda that would generate the insights needed to update the framework and inform new standards in the future. The committee emphasizes that greater improvements in K-12 science and engineering education will be made when all components of the system—from standards and assessments, to support for new and established teachers, to providing sufficient time for learning science—are aligned with the framework’s vision.
该报告还确定了原有K-12科学教育的组成部分与这一新愿景保持一致所蕴含的挑战,为标准制定提供了建议,并制定了一个研究议程,为更新框架和未来新标准的指导提供见解。委员会强调,如果K-12科学和工程教育体系的所有组成部分-从标准和评估、支持新教师和资深教师,到提供足够的时间学习科学-都符合框架的愿景,那么K-12科学和工程教育将得到更大的改善。
E BOX S-1
1 科学与工程实践Scientific and Engineering Practices
- 提出问题(针对科学)和定义问题(针对工程) Asking questions (for science) and defining problems (for engineering)
- 开发和使用模型 Developing and using models
- 设计和进行调查 Planning and carrying out investigations
- 分析和解释数据 Analyzing and interpreting data
- 使用数学和计算思维 Using mathematics and computational thinking
- 建构解释(用于科学)和设计解决方案(用于工程)Constructing explanations (for science) and designing solutions (for engineering)
- 基于证据进行论证Engaging in argument from evidence
- 获取,评估和交流信息 Obtaining, evaluating, and communicating information
2 跨学科概念Crosscutting Concepts
- 模式Patterns
- 因果关系:机理与解释 Cause and effect: Mechanism and explanation
- 尺度,比例和数量 Scale, proportion, and quantity
- 系统和系统模型 Systems and system models
- 能量和物质:流动,循环和守恒 Energy and matter: Flows, cycles, and conservation
- 结构与功能Structure and function
- 稳定性与变化Stability and change
3 学科核心概念 Disciplinary Core Ideas
- 物质科学 Physical Sciences
PS1:物质及其相互作用 Matter and its interactions
PS2:运动与稳定性:力与相互作用 Motion and stability: Forces and interactions
PS3:能量 Energy
PS4:波的概念及其在信息传输技术中的应用 Waves and their applications in technologies for information transfer - 生命科学 Life Sciences
LS1:从分子到生物:结构和过程 From molecules to organisms: Structures and processes
LS2:生态系统:相互作用,能量和动力学 Ecosystems: Interactions, energy, and dynamics
LS3:遗传:性状的遗传和变异 Heredity: Inheritance and variation of traits
LS4:生物进化:统一性与多样性 Biological evolution: Unity and diversity - 地球与空间科学 Earth and Space Sciences
ESS1:地球在宇宙中的位置 Earth’s place in the universe
ESS2:地球系统 Earth’s systems
ESS3:地球与人类活动 Earth and human activity - 工程,技术与科学的应用 Engineering, Technology, and Applications of Science
ETS1:工程设计Engineering design
ETS2:工程,技术,科学和社会之间的联系 Links among engineering, technology and society
关于几个名词的翻译:
中英文之间因为文化背景的不同,有些词汇,及其相应的概念是很难找到完全对等的翻译的。很多时候就要根据上下文的语境来挑选最合适的翻译。但不同的人也会因为不同的知识结构和认知模式,对同一个词汇或者概念的理解不尽相同,因此有些翻译是需要做一些解释,从而统一思想,避免交流中出现误解,曲解。
学科核心概念(disciplinary core ideas) 。 在英文中,”idea“是一个语义很丰富的词汇。在特定语境中,有时对应中文中的”概念“,比如,She doesn’t seem to have any idea of what I’m talking about; 有时对应中文中的”观点,观念“,比如, He has some very strange ideas about education. 参见百度翻译相关词条。而中文中的“概念”和“观念”在很多时候也是可以混用的。在框架Framework中,DCI具体的内容,也就是idea的外延,是一个个具体“词”,而不是一句句的“话”。从逻辑学的角度,词,对应概念,句子,对应命题,命题可以代表观念。 所以从逻辑学的教育,结合框架Framework的具体语境,我认为这里的idea就是“概念”的意思。
跨学科概念(crosscutting concepts)。 这里的concept翻译成概念应该没问题。因为concept的语义外延很狭窄。但是crosscutting怎样翻译? 直接翻译成“交叉”是可以的。但是好像还不够。 因为从上下文可以看出,这些概念是在不同学科领域都有的,相对于DCI更加抽象的上位概念。而且“交叉”这样的词汇不够美,所以有人翻译成“跨学科概念”,“交叉学科概念”,甚至是“跨学科大概念”、“交叉学科大概念”等等。 这种强调有其意义,但是又显得有些累赘。综合考量,这里选择“跨学科概念”的翻译,但是希望大家使用时还是要理解其与普通概念不同之处。