Multi-dimensional arrays
.. module:: pyopencl.array
The functionality in this module provides something of a work-alike for
:mod:numpy arrays, but with all operations executed on the CL compute device.
Data Types
PyOpenCL provides some amount of integration between the :mod:numpy
type system, as represented by :class:numpy.dtype, and the types
available in OpenCL. All the simple scalar types map straightforwardly
to their CL counterparts.
.. _vector-types:
Vector Types ^^^^^^^^^^^^
.. class :: vec
All of OpenCL's supported vector types, such as `float3` and `long4` areavailable as :mod:`numpy` data types within this class. These:class:`numpy.dtype` instances have field names of `x`, `y`, `z`, and `w`just like their OpenCL counterparts. They will work both for parameter passingto kernels as well as for passing data back and forth between kernels andPython code. For each type, a `make_type` function is also provided (e.g.`make_float3(x,y,z)`).If you want to construct a pre-initialized vector type you have three newfunctions to choose from:* `zeros_type()`* `ones_type()`* `filled_type(fill_value)`.. versionadded:: 2014.1.. versionchanged:: 2014.1The `make_type` functions have a default value (0) for each component.Relying on the default values has been deprecated. Either specify allcomponents or use one of th new flavors mentioned above for constructinga vector.
Custom data types ^^^^^^^^^^^^^^^^^
If you would like to use your own (struct/union/whatever) data types in array
operations where you supply operation source code, define those types in the
preamble passed to :class:pyopencl.elementwise.ElementwiseKernel,
:class:pyopencl.reduction.ReductionKernel (or similar), and let PyOpenCL know
about them using this function:
.. currentmodule:: pyopencl.tools
.. autofunction:: get_or_register_dtype
.. exception:: TypeNameNotKnown
.. versionadded:: 2013.1
.. function:: register_dtype(dtype, name)
.. versionchanged:: 2013.1This function has been deprecated. It is recommended that you developagainst the new interface, :func:`get_or_register_dtype`.
.. function:: dtype_to_ctype(dtype)
Returns a C name registered for *dtype*... versionadded: 2013.1
This function helps with producing C/OpenCL declarations for structured
:class:numpy.dtype instances:
.. autofunction:: match_dtype_to_c_struct
A more complete example of how to use custom structured types can be
found in :file:examples/demo-struct-reduce.py in the PyOpenCL
distribution.
.. currentmodule:: pyopencl.array
Complex Numbers ^^^^^^^^^^^^^^^
PyOpenCL’s :class:Array type supports complex numbers out of the box, by
simply using the corresponding :mod:numpy types.
If you would like to use this support in your own kernels, here’s how to proceed: Since OpenCL 1.2 (and earlier) do not specify native complex number support, PyOpenCL works around that deficiency. By saying::
#include <pyopencl-complex.h>
in your kernel, you get complex types cfloat_t and cdouble_t, along with
functions defined on them such as cfloat_mul(a, b) or cdouble_log(z).
Elementwise kernels automatically include the header if your kernel has
complex input or output.
See the source file
<https://github.com/inducer/pyopencl/blob/master/pyopencl/cl/pyopencl-complex.h>_
for a precise list of what’s available.
If you need double precision support, please::
#define PYOPENCL_DEFINE_CDOUBLE
before including the header, as DP support apparently cannot be reliably autodetected.
Under the hood, the complex types are struct types as defined in the header. Ideally, you should only access the structs through the provided functions, never directly.
.. versionadded:: 2012.1
.. versionchanged:: 2015.2
**[INCOMPATIBLE]** Changed PyOpenCL's complex numbers from ``float2`` and``double2`` OpenCL vector types to custom ``struct``. This was changedbecause it very easily introduced bugs where* complex*complex* real+complex*look* like they may do the right thing, but silently do the wrong thing.
The :class:Array Class
.. autoclass:: Array
.. autoexception:: ArrayHasOffsetError
Constructing :class:Array Instances
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autofunction:: to_device .. function:: empty(queue, shape, dtype, order=”C”, allocator=None, data=None)
A synonym for the :class:`Array` constructor.
.. autofunction:: zeros .. autofunction:: empty_like .. autofunction:: zeros_like .. autofunction:: arange .. autofunction:: take .. autofunction:: concatenate
Manipulating :class:Array instances
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autofunction:: transpose .. autofunction:: reshape
Conditionals ^^^^^^^^^^^^
.. autofunction:: if_positive .. autofunction:: maximum .. autofunction:: minimum
.. _reductions:
Reductions ^^^^^^^^^^
.. autofunction:: sum .. autofunction:: dot .. autofunction:: vdot .. autofunction:: subset_dot .. autofunction:: max .. autofunction:: min .. autofunction:: subset_max .. autofunction:: subset_min
See also :ref:custom-reductions.
Elementwise Functions on :class:Array Instances
.. module:: pyopencl.clmath
The :mod:pyopencl.clmath module contains exposes array versions of the C
functions available in the OpenCL standard. (See table 6.8 in the spec.)
.. function:: acos(array, queue=None) .. function:: acosh(array, queue=None) .. function:: acospi(array, queue=None)
.. function:: asin(array, queue=None) .. function:: asinh(array, queue=None) .. function:: asinpi(array, queue=None)
.. function:: atan(array, queue=None) .. autofunction:: atan2 .. function:: atanh(array, queue=None) .. function:: atanpi(array, queue=None) .. autofunction:: atan2pi
.. function:: cbrt(array, queue=None) .. function:: ceil(array, queue=None) .. TODO: copysign
.. function:: cos(array, queue=None) .. function:: cosh(array, queue=None) .. function:: cospi(array, queue=None)
.. function:: erfc(array, queue=None) .. function:: erf(array, queue=None) .. function:: exp(array, queue=None) .. function:: exp2(array, queue=None) .. function:: exp10(array, queue=None) .. function:: expm1(array, queue=None)
.. function:: fabs(array, queue=None) .. TODO: fdim .. function:: floor(array, queue=None) .. TODO: fma .. TODO: fmax .. TODO: fmin
.. function:: fmod(arg, mod, queue=None)
Return the floating point remainder of the division `arg/mod`,for each element in `arg` and `mod`.
.. TODO: fract
.. function:: frexp(arg, queue=None)
Return a tuple `(significands, exponents)` such that`arg == significand * 2**exponent`.
.. TODO: hypot
.. function:: ilogb(array, queue=None) .. function:: ldexp(significand, exponent, queue=None)
Return a new array of floating point values composed from theentries of `significand` and `exponent`, paired together as`result = significand * 2**exponent`.
.. function:: lgamma(array, queue=None) .. TODO: lgamma_r
.. function:: log(array, queue=None) .. function:: log2(array, queue=None) .. function:: log10(array, queue=None) .. function:: log1p(array, queue=None) .. function:: logb(array, queue=None)
.. TODO: mad .. TODO: maxmag .. TODO: minmag
.. function:: modf(arg, queue=None)
Return a tuple `(fracpart, intpart)` of arrays containing theinteger and fractional parts of `arg`.
.. function:: nan(array, queue=None)
.. TODO: nextafter .. TODO: remainder .. TODO: remquo
.. function:: rint(array, queue=None) .. TODO: rootn .. function:: round(array, queue=None)
.. function:: sin(array, queue=None) .. TODO: sincos .. function:: sinh(array, queue=None) .. function:: sinpi(array, queue=None)
.. function:: sqrt(array, queue=None)
.. function:: tan(array, queue=None) .. function:: tanh(array, queue=None) .. function:: tanpi(array, queue=None) .. function:: tgamma(array, queue=None) .. function:: trunc(array, queue=None)
Generating Arrays of Random Numbers
.. automodule:: pyopencl.clrandom
