Symbol

概述

ES5 的对象属性名都是字符串,这容易造成属性名的冲突。比如,你使用了一个他人提供的对象,但又想为这个对象添加新的方法(mixin 模式),新方法的名字就有可能与现有方法产生冲突。如果有一种机制,保证每个属性的名字都是独一无二的就好了,这样就从根本上防止属性名的冲突。这就是 ES6 引入Symbol的原因。

ES6 引入了一种新的原始数据类型Symbol,表示独一无二的值。它是 JavaScript 语言的第七种数据类型,前六种是:undefinednull、布尔值(Boolean)、字符串(String)、数值(Number)、对象(Object)。

Symbol 值通过Symbol函数生成。这就是说,对象的属性名现在可以有两种类型,一种是原来就有的字符串,另一种就是新增的 Symbol 类型。凡是属性名属于 Symbol 类型,就都是独一无二的,可以保证不会与其他属性名产生冲突。

  1. let s = Symbol();
  2. typeof s
  3. // "symbol"

上面代码中,变量s就是一个独一无二的值。typeof运算符的结果,表明变量s是 Symbol 数据类型,而不是字符串之类的其他类型。

注意,Symbol函数前不能使用new命令,否则会报错。这是因为生成的 Symbol 是一个原始类型的值,不是对象。也就是说,由于 Symbol 值不是对象,所以不能添加属性。基本上,它是一种类似于字符串的数据类型。

Symbol函数可以接受一个字符串作为参数,表示对 Symbol 实例的描述,主要是为了在控制台显示,或者转为字符串时,比较容易区分。

  1. let s1 = Symbol('foo');
  2. let s2 = Symbol('bar');
  3. s1 // Symbol(foo)
  4. s2 // Symbol(bar)
  5. s1.toString() // "Symbol(foo)"
  6. s2.toString() // "Symbol(bar)"

上面代码中,s1s2是两个 Symbol 值。如果不加参数,它们在控制台的输出都是Symbol(),不利于区分。有了参数以后,就等于为它们加上了描述,输出的时候就能够分清,到底是哪一个值。

如果 Symbol 的参数是一个对象,就会调用该对象的toString方法,将其转为字符串,然后才生成一个 Symbol 值。

  1. const obj = {
  2. toString() {
  3. return 'abc';
  4. }
  5. };
  6. const sym = Symbol(obj);
  7. sym // Symbol(abc)

注意,Symbol函数的参数只是表示对当前 Symbol 值的描述,因此相同参数的Symbol函数的返回值是不相等的。

  1. // 没有参数的情况
  2. let s1 = Symbol();
  3. let s2 = Symbol();
  4. s1 === s2 // false
  5. // 有参数的情况
  6. let s1 = Symbol('foo');
  7. let s2 = Symbol('foo');
  8. s1 === s2 // false

上面代码中,s1s2都是Symbol函数的返回值,而且参数相同,但是它们是不相等的。

Symbol 值不能与其他类型的值进行运算,会报错。

  1. let sym = Symbol('My symbol');
  2. "your symbol is " + sym
  3. // TypeError: can't convert symbol to string
  4. `your symbol is ${sym}`
  5. // TypeError: can't convert symbol to string

但是,Symbol 值可以显式转为字符串。

  1. let sym = Symbol('My symbol');
  2. String(sym) // 'Symbol(My symbol)'
  3. sym.toString() // 'Symbol(My symbol)'

另外,Symbol 值也可以转为布尔值,但是不能转为数值。

  1. let sym = Symbol();
  2. Boolean(sym) // true
  3. !sym // false
  4. if (sym) {
  5. // ...
  6. }
  7. Number(sym) // TypeError
  8. sym + 2 // TypeError

作为属性名的 Symbol

由于每一个 Symbol 值都是不相等的,这意味着 Symbol 值可以作为标识符,用于对象的属性名,就能保证不会出现同名的属性。这对于一个对象由多个模块构成的情况非常有用,能防止某一个键被不小心改写或覆盖。

  1. let mySymbol = Symbol();
  2. // 第一种写法
  3. let a = {};
  4. a[mySymbol] = 'Hello!';
  5. // 第二种写法
  6. let a = {
  7. [mySymbol]: 'Hello!'
  8. };
  9. // 第三种写法
  10. let a = {};
  11. Object.defineProperty(a, mySymbol, { value: 'Hello!' });
  12. // 以上写法都得到同样结果
  13. a[mySymbol] // "Hello!"

上面代码通过方括号结构和Object.defineProperty,将对象的属性名指定为一个 Symbol 值。

注意,Symbol 值作为对象属性名时,不能用点运算符。

  1. const mySymbol = Symbol();
  2. const a = {};
  3. a.mySymbol = 'Hello!';
  4. a[mySymbol] // undefined
  5. a['mySymbol'] // "Hello!"

上面代码中,因为点运算符后面总是字符串,所以不会读取mySymbol作为标识名所指代的那个值,导致a的属性名实际上是一个字符串,而不是一个 Symbol 值。

同理,在对象的内部,使用 Symbol 值定义属性时,Symbol 值必须放在方括号之中。

  1. let s = Symbol();
  2. let obj = {
  3. [s]: function (arg) { ... }
  4. };
  5. obj[s](123);

上面代码中,如果s不放在方括号中,该属性的键名就是字符串s,而不是s所代表的那个 Symbol 值。

采用增强的对象写法,上面代码的obj对象可以写得更简洁一些。

  1. let obj = {
  2. [s](arg) { ... }
  3. };

Symbol 类型还可以用于定义一组常量,保证这组常量的值都是不相等的。

  1. log.levels = {
  2. DEBUG: Symbol('debug'),
  3. INFO: Symbol('info'),
  4. WARN: Symbol('warn')
  5. };
  6. log(log.levels.DEBUG, 'debug message');
  7. log(log.levels.INFO, 'info message');

下面是另外一个例子。

  1. const COLOR_RED = Symbol();
  2. const COLOR_GREEN = Symbol();
  3. function getComplement(color) {
  4. switch (color) {
  5. case COLOR_RED:
  6. return COLOR_GREEN;
  7. case COLOR_GREEN:
  8. return COLOR_RED;
  9. default:
  10. throw new Error('Undefined color');
  11. }
  12. }

常量使用 Symbol 值最大的好处,就是其他任何值都不可能有相同的值了,因此可以保证上面的switch语句会按设计的方式工作。

还有一点需要注意,Symbol 值作为属性名时,该属性还是公开属性,不是私有属性。

实例:消除魔术字符串

魔术字符串指的是,在代码之中多次出现、与代码形成强耦合的某一个具体的字符串或者数值。风格良好的代码,应该尽量消除魔术字符串,改由含义清晰的变量代替。

  1. function getArea(shape, options) {
  2. let area = 0;
  3. switch (shape) {
  4. case 'Triangle': // 魔术字符串
  5. area = .5 * options.width * options.height;
  6. break;
  7. /* ... more code ... */
  8. }
  9. return area;
  10. }
  11. getArea('Triangle', { width: 100, height: 100 }); // 魔术字符串

上面代码中,字符串Triangle就是一个魔术字符串。它多次出现,与代码形成“强耦合”,不利于将来的修改和维护。

常用的消除魔术字符串的方法,就是把它写成一个变量。

  1. const shapeType = {
  2. triangle: 'Triangle'
  3. };
  4. function getArea(shape, options) {
  5. let area = 0;
  6. switch (shape) {
  7. case shapeType.triangle:
  8. area = .5 * options.width * options.height;
  9. break;
  10. }
  11. return area;
  12. }
  13. getArea(shapeType.triangle, { width: 100, height: 100 });

上面代码中,我们把Triangle写成shapeType对象的triangle属性,这样就消除了强耦合。

如果仔细分析,可以发现shapeType.triangle等于哪个值并不重要,只要确保不会跟其他shapeType属性的值冲突即可。因此,这里就很适合改用 Symbol 值。

  1. const shapeType = {
  2. triangle: Symbol()
  3. };

上面代码中,除了将shapeType.triangle的值设为一个 Symbol,其他地方都不用修改。

属性名的遍历

Symbol 作为属性名,该属性不会出现在for...infor...of循环中,也不会被Object.keys()Object.getOwnPropertyNames()JSON.stringify()返回。但是,它也不是私有属性,有一个Object.getOwnPropertySymbols方法,可以获取指定对象的所有 Symbol 属性名。

Object.getOwnPropertySymbols方法返回一个数组,成员是当前对象的所有用作属性名的 Symbol 值。

  1. const obj = {};
  2. let a = Symbol('a');
  3. let b = Symbol('b');
  4. obj[a] = 'Hello';
  5. obj[b] = 'World';
  6. const objectSymbols = Object.getOwnPropertySymbols(obj);
  7. objectSymbols
  8. // [Symbol(a), Symbol(b)]

下面是另一个例子,Object.getOwnPropertySymbols方法与for...in循环、Object.getOwnPropertyNames方法进行对比的例子。

  1. const obj = {};
  2. let foo = Symbol("foo");
  3. Object.defineProperty(obj, foo, {
  4. value: "foobar",
  5. });
  6. for (let i in obj) {
  7. console.log(i); // 无输出
  8. }
  9. Object.getOwnPropertyNames(obj)
  10. // []
  11. Object.getOwnPropertySymbols(obj)
  12. // [Symbol(foo)]

上面代码中,使用Object.getOwnPropertyNames方法得不到Symbol属性名,需要使用Object.getOwnPropertySymbols方法。

另一个新的 API,Reflect.ownKeys方法可以返回所有类型的键名,包括常规键名和 Symbol 键名。

  1. let obj = {
  2. [Symbol('my_key')]: 1,
  3. enum: 2,
  4. nonEnum: 3
  5. };
  6. Reflect.ownKeys(obj)
  7. // ["enum", "nonEnum", Symbol(my_key)]

由于以 Symbol 值作为名称的属性,不会被常规方法遍历得到。我们可以利用这个特性,为对象定义一些非私有的、但又希望只用于内部的方法。

  1. let size = Symbol('size');
  2. class Collection {
  3. constructor() {
  4. this[size] = 0;
  5. }
  6. add(item) {
  7. this[this[size]] = item;
  8. this[size]++;
  9. }
  10. static sizeOf(instance) {
  11. return instance[size];
  12. }
  13. }
  14. let x = new Collection();
  15. Collection.sizeOf(x) // 0
  16. x.add('foo');
  17. Collection.sizeOf(x) // 1
  18. Object.keys(x) // ['0']
  19. Object.getOwnPropertyNames(x) // ['0']
  20. Object.getOwnPropertySymbols(x) // [Symbol(size)]

上面代码中,对象xsize属性是一个 Symbol 值,所以Object.keys(x)Object.getOwnPropertyNames(x)都无法获取它。这就造成了一种非私有的内部方法的效果。

Symbol.for(),Symbol.keyFor()

有时,我们希望重新使用同一个 Symbol 值,Symbol.for方法可以做到这一点。它接受一个字符串作为参数,然后搜索有没有以该参数作为名称的 Symbol 值。如果有,就返回这个 Symbol 值,否则就新建并返回一个以该字符串为名称的 Symbol 值。

  1. let s1 = Symbol.for('foo');
  2. let s2 = Symbol.for('foo');
  3. s1 === s2 // true

上面代码中,s1s2都是 Symbol 值,但是它们都是同样参数的Symbol.for方法生成的,所以实际上是同一个值。

Symbol.for()Symbol()这两种写法,都会生成新的 Symbol。它们的区别是,前者会被登记在全局环境中供搜索,后者不会。Symbol.for()不会每次调用就返回一个新的 Symbol 类型的值,而是会先检查给定的key是否已经存在,如果不存在才会新建一个值。比如,如果你调用Symbol.for("cat")30 次,每次都会返回同一个 Symbol 值,但是调用Symbol("cat")30 次,会返回 30 个不同的 Symbol 值。

  1. Symbol.for("bar") === Symbol.for("bar")
  2. // true
  3. Symbol("bar") === Symbol("bar")
  4. // false

上面代码中,由于Symbol()写法没有登记机制,所以每次调用都会返回一个不同的值。

Symbol.keyFor方法返回一个已登记的 Symbol 类型值的key

  1. let s1 = Symbol.for("foo");
  2. Symbol.keyFor(s1) // "foo"
  3. let s2 = Symbol("foo");
  4. Symbol.keyFor(s2) // undefined

上面代码中,变量s2属于未登记的 Symbol 值,所以返回undefined

需要注意的是,Symbol.for为 Symbol 值登记的名字,是全局环境的,可以在不同的 iframe 或 service worker 中取到同一个值。

  1. iframe = document.createElement('iframe');
  2. iframe.src = String(window.location);
  3. document.body.appendChild(iframe);
  4. iframe.contentWindow.Symbol.for('foo') === Symbol.for('foo')
  5. // true

上面代码中,iframe 窗口生成的 Symbol 值,可以在主页面得到。

实例:模块的 Singleton 模式

Singleton 模式指的是调用一个类,任何时候返回的都是同一个实例。

对于 Node 来说,模块文件可以看成是一个类。怎么保证每次执行这个模块文件,返回的都是同一个实例呢?

很容易想到,可以把实例放到顶层对象global

  1. // mod.js
  2. function A() {
  3. this.foo = 'hello';
  4. }
  5. if (!global._foo) {
  6. global._foo = new A();
  7. }
  8. module.exports = global._foo;

然后,加载上面的mod.js

  1. const a = require('./mod.js');
  2. console.log(a.foo);

上面代码中,变量a任何时候加载的都是A的同一个实例。

但是,这里有一个问题,全局变量global._foo是可写的,任何文件都可以修改。

  1. global._foo = { foo: 'world' };
  2. const a = require('./mod.js');
  3. console.log(a.foo);

上面的代码,会使得加载mod.js的脚本都失真。

为了防止这种情况出现,我们就可以使用 Symbol。

  1. // mod.js
  2. const FOO_KEY = Symbol.for('foo');
  3. function A() {
  4. this.foo = 'hello';
  5. }
  6. if (!global[FOO_KEY]) {
  7. global[FOO_KEY] = new A();
  8. }
  9. module.exports = global[FOO_KEY];

上面代码中,可以保证global[FOO_KEY]不会被无意间覆盖,但还是可以被改写。

  1. global[Symbol.for('foo')] = { foo: 'world' };
  2. const a = require('./mod.js');

如果键名使用Symbol方法生成,那么外部将无法引用这个值,当然也就无法改写。

  1. // mod.js
  2. const FOO_KEY = Symbol('foo');
  3. // 后面代码相同 ……

上面代码将导致其他脚本都无法引用FOO_KEY。但这样也有一个问题,就是如果多次执行这个脚本,每次得到的FOO_KEY都是不一样的。虽然 Node 会将脚本的执行结果缓存,一般情况下,不会多次执行同一个脚本,但是用户可以手动清除缓存,所以也不是绝对可靠。

内置的 Symbol 值

除了定义自己使用的 Symbol 值以外,ES6 还提供了 11 个内置的 Symbol 值,指向语言内部使用的方法。

Symbol.hasInstance

对象的Symbol.hasInstance属性,指向一个内部方法。当其他对象使用instanceof运算符,判断是否为该对象的实例时,会调用这个方法。比如,foo instanceof Foo在语言内部,实际调用的是Foo[Symbol.hasInstance](foo)

  1. class MyClass {
  2. [Symbol.hasInstance](foo) {
  3. return foo instanceof Array;
  4. }
  5. }
  6. [1, 2, 3] instanceof new MyClass() // true

上面代码中,MyClass是一个类,new MyClass()会返回一个实例。该实例的Symbol.hasInstance方法,会在进行instanceof运算时自动调用,判断左侧的运算子是否为Array的实例。

下面是另一个例子。

  1. class Even {
  2. static [Symbol.hasInstance](obj) {
  3. return Number(obj) % 2 === 0;
  4. }
  5. }
  6. // 等同于
  7. const Even = {
  8. [Symbol.hasInstance](obj) {
  9. return Number(obj) % 2 === 0;
  10. }
  11. };
  12. 1 instanceof Even // false
  13. 2 instanceof Even // true
  14. 12345 instanceof Even // false

Symbol.isConcatSpreadable

对象的Symbol.isConcatSpreadable属性等于一个布尔值,表示该对象用于Array.prototype.concat()时,是否可以展开。

  1. let arr1 = ['c', 'd'];
  2. ['a', 'b'].concat(arr1, 'e') // ['a', 'b', 'c', 'd', 'e']
  3. arr1[Symbol.isConcatSpreadable] // undefined
  4. let arr2 = ['c', 'd'];
  5. arr2[Symbol.isConcatSpreadable] = false;
  6. ['a', 'b'].concat(arr2, 'e') // ['a', 'b', ['c','d'], 'e']

上面代码说明,数组的默认行为是可以展开,Symbol.isConcatSpreadable默认等于undefined。该属性等于true时,也有展开的效果。

类似数组的对象正好相反,默认不展开。它的Symbol.isConcatSpreadable属性设为true,才可以展开。

  1. let obj = {length: 2, 0: 'c', 1: 'd'};
  2. ['a', 'b'].concat(obj, 'e') // ['a', 'b', obj, 'e']
  3. obj[Symbol.isConcatSpreadable] = true;
  4. ['a', 'b'].concat(obj, 'e') // ['a', 'b', 'c', 'd', 'e']

Symbol.isConcatSpreadable属性也可以定义在类里面。

  1. class A1 extends Array {
  2. constructor(args) {
  3. super(args);
  4. this[Symbol.isConcatSpreadable] = true;
  5. }
  6. }
  7. class A2 extends Array {
  8. constructor(args) {
  9. super(args);
  10. }
  11. get [Symbol.isConcatSpreadable] () {
  12. return false;
  13. }
  14. }
  15. let a1 = new A1();
  16. a1[0] = 3;
  17. a1[1] = 4;
  18. let a2 = new A2();
  19. a2[0] = 5;
  20. a2[1] = 6;
  21. [1, 2].concat(a1).concat(a2)
  22. // [1, 2, 3, 4, [5, 6]]

上面代码中,类A1是可展开的,类A2是不可展开的,所以使用concat时有不一样的结果。

注意,Symbol.isConcatSpreadable的位置差异,A1是定义在实例上,A2是定义在类本身,效果相同。

Symbol.species

对象的Symbol.species属性,指向一个构造函数。创建衍生对象时,会使用该属性。

  1. class MyArray extends Array {
  2. }
  3. const a = new MyArray(1, 2, 3);
  4. const b = a.map(x => x);
  5. const c = a.filter(x => x > 1);
  6. b instanceof MyArray // true
  7. c instanceof MyArray // true

上面代码中,子类MyArray继承了父类ArrayaMyArray的实例,bca的衍生对象。你可能会认为,bc都是调用数组方法生成的,所以应该是数组(Array的实例),但实际上它们也是MyArray的实例。

Symbol.species属性就是为了解决这个问题而提供的。现在,我们可以为MyArray设置Symbol.species属性。

  1. class MyArray extends Array {
  2. static get [Symbol.species]() { return Array; }
  3. }

上面代码中,由于定义了Symbol.species属性,创建衍生对象时就会使用这个属性返回的函数,作为构造函数。这个例子也说明,定义Symbol.species属性要采用get取值器。默认的Symbol.species属性等同于下面的写法。

  1. static get [Symbol.species]() {
  2. return this;
  3. }

现在,再来看前面的例子。

  1. class MyArray extends Array {
  2. static get [Symbol.species]() { return Array; }
  3. }
  4. const a = new MyArray();
  5. const b = a.map(x => x);
  6. b instanceof MyArray // false
  7. b instanceof Array // true

上面代码中,a.map(x => x)生成的衍生对象,就不是MyArray的实例,而直接就是Array的实例。

再看一个例子。

  1. class T1 extends Promise {
  2. }
  3. class T2 extends Promise {
  4. static get [Symbol.species]() {
  5. return Promise;
  6. }
  7. }
  8. new T1(r => r()).then(v => v) instanceof T1 // true
  9. new T2(r => r()).then(v => v) instanceof T2 // false

上面代码中,T2定义了Symbol.species属性,T1没有。结果就导致了创建衍生对象时(then方法),T1调用的是自身的构造方法,而T2调用的是Promise的构造方法。

总之,Symbol.species的作用在于,实例对象在运行过程中,需要再次调用自身的构造函数时,会调用该属性指定的构造函数。它主要的用途是,有些类库是在基类的基础上修改的,那么子类使用继承的方法时,作者可能希望返回基类的实例,而不是子类的实例。

Symbol.match

对象的Symbol.match属性,指向一个函数。当执行str.match(myObject)时,如果该属性存在,会调用它,返回该方法的返回值。

  1. String.prototype.match(regexp)
  2. // 等同于
  3. regexp[Symbol.match](this)
  4. class MyMatcher {
  5. [Symbol.match](string) {
  6. return 'hello world'.indexOf(string);
  7. }
  8. }
  9. 'e'.match(new MyMatcher()) // 1

Symbol.replace

对象的Symbol.replace属性,指向一个方法,当该对象被String.prototype.replace方法调用时,会返回该方法的返回值。

  1. String.prototype.replace(searchValue, replaceValue)
  2. // 等同于
  3. searchValue[Symbol.replace](this, replaceValue)

下面是一个例子。

  1. const x = {};
  2. x[Symbol.replace] = (...s) => console.log(s);
  3. 'Hello'.replace(x, 'World') // ["Hello", "World"]

Symbol.replace方法会收到两个参数,第一个参数是replace方法正在作用的对象,上面例子是Hello,第二个参数是替换后的值,上面例子是World

Symbol.search

对象的Symbol.search属性,指向一个方法,当该对象被String.prototype.search方法调用时,会返回该方法的返回值。

  1. String.prototype.search(regexp)
  2. // 等同于
  3. regexp[Symbol.search](this)
  4. class MySearch {
  5. constructor(value) {
  6. this.value = value;
  7. }
  8. [Symbol.search](string) {
  9. return string.indexOf(this.value);
  10. }
  11. }
  12. 'foobar'.search(new MySearch('foo')) // 0

Symbol.split

对象的Symbol.split属性,指向一个方法,当该对象被String.prototype.split方法调用时,会返回该方法的返回值。

  1. String.prototype.split(separator, limit)
  2. // 等同于
  3. separator[Symbol.split](this, limit)

下面是一个例子。

  1. class MySplitter {
  2. constructor(value) {
  3. this.value = value;
  4. }
  5. [Symbol.split](string) {
  6. let index = string.indexOf(this.value);
  7. if (index === -1) {
  8. return string;
  9. }
  10. return [
  11. string.substr(0, index),
  12. string.substr(index + this.value.length)
  13. ];
  14. }
  15. }
  16. 'foobar'.split(new MySplitter('foo'))
  17. // ['', 'bar']
  18. 'foobar'.split(new MySplitter('bar'))
  19. // ['foo', '']
  20. 'foobar'.split(new MySplitter('baz'))
  21. // 'foobar'

上面方法使用Symbol.split方法,重新定义了字符串对象的split方法的行为,

Symbol.iterator

对象的Symbol.iterator属性,指向该对象的默认遍历器方法。

  1. const myIterable = {};
  2. myIterable[Symbol.iterator] = function* () {
  3. yield 1;
  4. yield 2;
  5. yield 3;
  6. };
  7. [...myIterable] // [1, 2, 3]

对象进行for...of循环时,会调用Symbol.iterator方法,返回该对象的默认遍历器,详细介绍参见《Iterator 和 for…of 循环》一章。

  1. class Collection {
  2. *[Symbol.iterator]() {
  3. let i = 0;
  4. while(this[i] !== undefined) {
  5. yield this[i];
  6. ++i;
  7. }
  8. }
  9. }
  10. let myCollection = new Collection();
  11. myCollection[0] = 1;
  12. myCollection[1] = 2;
  13. for(let value of myCollection) {
  14. console.log(value);
  15. }
  16. // 1
  17. // 2

Symbol.toPrimitive

对象的Symbol.toPrimitive属性,指向一个方法。该对象被转为原始类型的值时,会调用这个方法,返回该对象对应的原始类型值。

Symbol.toPrimitive被调用时,会接受一个字符串参数,表示当前运算的模式,一共有三种模式。

  • Number:该场合需要转成数值
  • String:该场合需要转成字符串
  • Default:该场合可以转成数值,也可以转成字符串
  1. let obj = {
  2. [Symbol.toPrimitive](hint) {
  3. switch (hint) {
  4. case 'number':
  5. return 123;
  6. case 'string':
  7. return 'str';
  8. case 'default':
  9. return 'default';
  10. default:
  11. throw new Error();
  12. }
  13. }
  14. };
  15. 2 * obj // 246
  16. 3 + obj // '3default'
  17. obj == 'default' // true
  18. String(obj) // 'str'

Symbol.toStringTag

对象的Symbol.toStringTag属性,指向一个方法。在该对象上面调用Object.prototype.toString方法时,如果这个属性存在,它的返回值会出现在toString方法返回的字符串之中,表示对象的类型。也就是说,这个属性可以用来定制[object Object][object Array]object后面的那个字符串。

  1. // 例一
  2. ({[Symbol.toStringTag]: 'Foo'}.toString())
  3. // "[object Foo]"
  4. // 例二
  5. class Collection {
  6. get [Symbol.toStringTag]() {
  7. return 'xxx';
  8. }
  9. }
  10. let x = new Collection();
  11. Object.prototype.toString.call(x) // "[object xxx]"

ES6 新增内置对象的Symbol.toStringTag属性值如下。

  • JSON[Symbol.toStringTag]:’JSON’
  • Math[Symbol.toStringTag]:’Math’
  • Module 对象M[Symbol.toStringTag]:’Module’
  • ArrayBuffer.prototype[Symbol.toStringTag]:’ArrayBuffer’
  • DataView.prototype[Symbol.toStringTag]:’DataView’
  • Map.prototype[Symbol.toStringTag]:’Map’
  • Promise.prototype[Symbol.toStringTag]:’Promise’
  • Set.prototype[Symbol.toStringTag]:’Set’
  • %TypedArray%.prototype[Symbol.toStringTag]:’Uint8Array’等
  • WeakMap.prototype[Symbol.toStringTag]:’WeakMap’
  • WeakSet.prototype[Symbol.toStringTag]:’WeakSet’
  • %MapIteratorPrototype%[Symbol.toStringTag]:’Map Iterator’
  • %SetIteratorPrototype%[Symbol.toStringTag]:’Set Iterator’
  • %StringIteratorPrototype%[Symbol.toStringTag]:’String Iterator’
  • Symbol.prototype[Symbol.toStringTag]:’Symbol’
  • Generator.prototype[Symbol.toStringTag]:’Generator’
  • GeneratorFunction.prototype[Symbol.toStringTag]:’GeneratorFunction’

Symbol.unscopables

对象的Symbol.unscopables属性,指向一个对象。该对象指定了使用with关键字时,哪些属性会被with环境排除。

  1. Array.prototype[Symbol.unscopables]
  2. // {
  3. // copyWithin: true,
  4. // entries: true,
  5. // fill: true,
  6. // find: true,
  7. // findIndex: true,
  8. // includes: true,
  9. // keys: true
  10. // }
  11. Object.keys(Array.prototype[Symbol.unscopables])
  12. // ['copyWithin', 'entries', 'fill', 'find', 'findIndex', 'includes', 'keys']

上面代码说明,数组有 7 个属性,会被with命令排除。

  1. // 没有 unscopables 时
  2. class MyClass {
  3. foo() { return 1; }
  4. }
  5. var foo = function () { return 2; };
  6. with (MyClass.prototype) {
  7. foo(); // 1
  8. }
  9. // 有 unscopables 时
  10. class MyClass {
  11. foo() { return 1; }
  12. get [Symbol.unscopables]() {
  13. return { foo: true };
  14. }
  15. }
  16. var foo = function () { return 2; };
  17. with (MyClass.prototype) {
  18. foo(); // 2
  19. }

上面代码通过指定Symbol.unscopables属性,使得with语法块不会在当前作用域寻找foo属性,即foo将指向外层作用域的变量。