【下载地址】
ACM/ICPC 算法代码库,供日常使用参考。
目录 ………………………………………. 1
Graph 图论 …………………………………. 3
| DAG 的深度优先搜索标记 ……………………………………… 3
| 无向图找桥 …………………………………………………………… 3
| 无向图连通度(割) ……………………………………………….. 3
| 最大团问题 DP + DFS …………………………………………. 3
| 欧拉路径O(E) ……………………………………………………… 3
| DIJKSTRA 数组实现O(N^2) ………………………………. 3
| DIJKSTRA O(E LOG E) ……………………………………… 4
| BELLMANFORD 单源最短路O(VE) …………………………… 4
| SPFA(SHORTEST PATH FASTER ALGORITHM) ………….. 4
| 第K 短路(DIJKSTRA) …………………………………………. 5
| 第K 短路(A) …………………………………………………… 5
| PRIM 求MST ………………………………………………………….. 6
| 次小生成树O(V^2) ……………………………………………… 6
| 最小生成森林问题(K 颗树)O(MLOGM). …………………. 6
| 有向图最小树形图 ………………………………………………… 6
| MINIMAL STEINER TREE ………………………………………… 6
| TARJAN 强连通分量 ……………………………………………….. 7
| 弦图判断 ………………………………………………………………. 7
| 弦图的PERFECT ELIMINATION 点排列 …………………….. 7
| 稳定婚姻问题 O(N^2) ………………………………………….. 7
| 拓扑排序 ………………………………………………………………. 8
| 无向图连通分支(DFS/BFS 邻接阵) ……………………….. 8
| 有向图强连通分支(DFS/BFS 邻接阵)O(N^2) ………… 8
| 有向图最小点基(邻接阵)O(N^2)…………………………. 9
| FLOYD 求最小环 …………………………………………………….. 9
| 2-SAT 问题 …………………………………………………………… 9
Network 网络流 …………………………….. 11
| 二分图匹配(匈牙利算法DFS 实现) …………………. 11
| 二分图匹配(匈牙利算法BFS 实现) …………………. 11
| 二分图匹配(HOPCROFT-CARP 的算法) ……………… 11
| 二分图最佳匹配(KUHN MUNKRAS 算法O(MMN)) 11
| 无向图最小割 O(N^3) ……………………………………….. 12
| 有上下界的最小(最大)流 …………………………………… 12
| DINIC 最大流 O(V^2 E) ………………………………… 12
| HLPP 最大流 O(V^3) ………………………………………… 13
| 最小费用流 O(V E F) ………………………………… 13
| 最小费用流 O(V^2 F) ……………………………………. 14
| 最佳边割集 …………………………………………………………. 15
| 最佳点割集 …………………………………………………………. 15
| 最小边割集 …………………………………………………………. 15
| 最小点割集(点连通度) ……………………………………. 16
| 最小路径覆盖O(N^3) ………………………………………… 16
| 最小点集覆盖 ……………………………………………………… 16
Structure 数据结构 …………………………. 17
| 求某天是星期几 ………………………………………………….. 17
| 左偏树 合并复杂度O(LOG N) …………………………….. 17
| 树状数组 …………………………………………………………….. 17
| 二维树状数组 ……………………………………………………… 17
| TRIE 树(K 叉) …………………………………………………….. 17
| TRIE 树(左儿子又兄弟) ……………………………………… 18
| 后缀数组 O(N LOG N) …………………………………….. 18
| 后缀数组 O(N) …………………………………………………… 18
| RMQ 离线算法 O(NLOGN)+O(1) ……………………….. 19
| RMQ(RANGE MINIMUM/MAXIMUM QUERY)-ST 算法
(O(NLOGN + Q)) ……………………………………………………. 19
| RMQ 离线算法 O(NLOGN)+O(1)求解LCA …………. 19
| LCA 离线算法 O(E)+O(1) …………………………………. 20
| 带权值的并查集 ………………………………………………….. 20
| 快速排序 …………………………………………………………….. 20
| 2 台机器工作调度 ……………………………………………….. 20
| 比较高效的大数 ………………………………………………….. 20
| 普通的大数运算 ………………………………………………….. 21
| 最长公共递增子序列 O(N^2) ……………………………… 22
| 0-1 分数规划 ……………………………………………………… 22
| 最长有序子序列(递增/递减/非递增/非递减) …. 22
| 最长公共子序列 ………………………………………………….. 23
| 最少找硬币问题(贪心策略-深搜实现) …………….. 23
| 棋盘分割 …………………………………………………………….. 23
| 汉诺塔 ………………………………………………………………… 23
| STL 中的PRIORITY_QUEUE …………………………………… 24
| 堆栈 ……………………………………………………………………. 24
| 区间最大频率 ……………………………………………………… 24
| 取第K 个元素………………………………………………………. 25
| 归并排序求逆序数 ………………………………………………. 25
| 逆序数推排列数 ………………………………………………….. 25
| 二分查找 …………………………………………………………….. 25
| 二分查找(大于等于V 的第一个值)…………………… 25
| 所有数位相加 ……………………………………………………… 25
Number 数论 ……………………………….. 26
2
|递推求欧拉函数PHI(I) ……………………………………….. 26
|单独求欧拉函数PHI(X) ……………………………………….. 26
| GCD 最大公约数 …………………………………………………. 26
| 快速 GCD ……………………………………………………………. 26
| 扩展 GCD ……………………………………………………………. 26
| 模线性方程 A X = B (% N) ……………………………. 26
| 模线性方程组 ……………………………………………………… 26
| 筛素数 [1..N] …………………………………………………… 26
| 高效求小范围素数 [1..N] …………………………………. 26
| 随机素数测试(伪素数原理) ……………………………….. 26
| 组合数学相关 ……………………………………………………… 26
| POLYA 计数 ………………………………………………………….. 27
| 组合数C(N, R) ………………………………………………….. 27
| 最大1 矩阵 …………………………………………………………. 27
| 约瑟夫环问题(数学方法) ………………………………… 27
| 约瑟夫环问题(数组模拟) ………………………………… 27
| 取石子游戏1 ………………………………………………………. 27
| 集合划分问题 ……………………………………………………… 27
| 大数平方根(字符串数组表示) …………………………. 28
| 大数取模的二进制方法 ……………………………………….. 28
| 线性方程组A[][]X[]=B[] ………………………………… 28
| 追赶法解周期性方程 …………………………………………… 28
| 阶乘最后非零位,复杂度O(NLOGN) ……………………… 29
递归方法求解排列组合问题 ……………………. 30
| 类循环排列 …………………………………………………………. 30
| 全排列 ………………………………………………………………… 30
| 不重复排列 …………………………………………………………. 30
| 全组合 ………………………………………………………………… 31
| 不重复组合 …………………………………………………………. 31
| 应用 ……………………………………………………………………. 31
模式串匹配问题总结 …………………………. 32
| 字符串HASH ………………………………………………………… 32
| KMP 匹配算法O(M+N) ……………………………………….. 32
| KARP-RABIN 字符串匹配 ……………………………………… 32
| 基于KARP-RABIN 的字符块匹配…………………………… 32
| 函数名: STRSTR ………………………………………………….. 32
| BM 算法的改进的算法SUNDAY ALGORITHM ……………. 32
| 最短公共祖先(两个长字符串) …………………………. 33
| 最短公共祖先(多个短字符串) …………………………. 33
Geometry 计算几何 ………………………….. 34
| GRAHAM 求凸包 O(N LOGN) ……………………………… 34
| 判断线段相交 ……………………………………………………… 34
| 求多边形重心 ……………………………………………………… 34
| 三角形几个重要的点 …………………………………………… 34
| 平面最近点对 O(N LOGN) ……………………………….. 34
| LIUCTIC 的计算几何库 ………………………………………… 35
| 求平面上两点之间的距离 ……………………………………. 35
| (P1-P0)*(P2-P0)的叉积 ………………………………… 35
| 确定两条线段是否相交 ……………………………………….. 35
| 判断点P 是否在线段L 上 …………………………………….. 35
| 判断两个点是否相等 …………………………………………… 35
| 线段相交判断函数 ………………………………………………. 35
| 判断点Q 是否在多边形内 …………………………………… 35
| 计算多边形的面积 ………………………………………………. 35
| 解二次方程 AX^2+BX+C=0 …………………………………. 36
| 计算直线的一般式 AX+BY+C=0 …………………………… 36
| 点到直线距离 ……………………………………………………… 36
| 直线与圆的交点,已知直线与圆相交 ………………….. 36
| 点是否在射线的正向 …………………………………………… 36
| 射线与圆的第一个交点 ……………………………………….. 36
| 求点P1 关于直线LN 的对称点P2 ………………………… 36
| 两直线夹角(弧度) …………………………………………… 36
ACM/ICPC 竞赛之STL …………………………. 37
ACM/ICPC 竞赛之STL 简介 …………………………………… 37
ACM/ICPC 竞赛之STL—PAIR ……………………………….. 37
ACM/ICPC 竞赛之STL—VECTOR ……………………………. 37
ACM/ICPC 竞赛之STL—ITERATOR 简介 …………………. 38
ACM/ICPC 竞赛之STL—STRING ……………………………. 38
ACM/ICPC 竞赛之STL—STACK/QUEUE …………………… 38
ACM/ICPC 竞赛之STL—MAP …………………………………. 40
ACM/ICPC 竞赛之STL—ALGORITHM ……………………….. 40
STL IN ACM …………………………………………………………… 41
头文件 ……………………………………………………………………. 42
线段树 ……………………………………. 43
求矩形并的面积(线段树+离散化+扫描线) …………… 43
求矩形并的周长(线段树+离散化+扫描线) …………… 44