Table API 是流处理和批处理通用的关系型 API,Table API 可以基于流输入或者批输入来运行而不需要进行任何修改。Table API 是 SQL 语言的超集并专门为 Apache Flink 设计的,Table API 是 Scala 和 Java 语言集成式的 API 。与常规 SQL 语言中将查询指定为字符串不同,Table API 查询是以 Java 或 Scala 中的语言嵌入样式来定义 的,具有 IDE 支持如 : 自动完成和语法检测。
9.1 需要引入的 pom 依赖
<dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-planner_2.11</artifactId><version>1.10.0</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-api-scala-bridge_2.11</artifactId><version>1.10.0</version></dependency>
9.2 简单了解 TableAPI
def main(args: Array[String]): Unit = {val env = StreamExecutionEnvironment.getExecutionEnvironmentenv.setParallelism(1)val inputStream = env.readTextFile("..\\sensor.txt")val dataStream = inputStream.map(data => {val dataArray = data.split(",")SensorReading(dataArray(0).trim, dataArray(1).trim.toLong, dataArray(2).trim.toDouble)})// 基于env创建 tableEnvval settings: EnvironmentSettings = EnvironmentSettings.newInstance().useOldPlanner().inStreamingMode().build()val tableEnv: StreamTableEnvironment = StreamTableEnvironment.create(env, settings)// 从一条流创建一张表val dataTable: Table = tableEnv.fromDataStream(dataStream)// 从表里选取特定的数据val selectedTable: Table = dataTable.select('id, 'temperature).filter("id = 'sensor_1'")val selectedStream: DataStream[(String, Double)] = selectedTable.toAppendStream[(String, Double)]selectedStream.print()env.execute("table test")}
9.2.1 动态表
如果流中的数据类型是 case class 可以直接根据 case class 的结构生成 table:
tableEnv.fromDataStream(dataStream)
或者根据字段顺序单独命名:
tableEnv.fromDataStream(dataStream, ’id, ’timestamp .......)
最后的动态表可以转换为流进行输出:
table.toAppendStream[(String,String)]
9.2.2 字段
用一个单引号放到字段前面来标识字段名 , 如 ’name , ’mid ,’amount 等。
9.3 TableAPI 的窗口聚合操作
9.3.1 通过一个例子了解 TableAPI
// 统计每10秒中每个传感器温度值的个数def main(args: Array[String]): Unit = {val env = StreamExecutionEnvironment.getExecutionEnvironmentenv.setParallelism(1)env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)val inputStream = env.readTextFile("..\\sensor.txt")val dataStream = inputStream.map(data => {val dataArray = data.split(",")SensorReading(dataArray(0).trim, dataArray(1).trim.toLong, dataArray(2).trim.toDouble)}).assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor[SensorReading](Time.seconds(1)) {override def extractTimestamp(element: SensorReading): Long = element.timestamp * 1000L})// 基于env创建 tableEnvval settings: EnvironmentSettings = EnvironmentSettings.newInstance().useOldPlanner().inStreamingMode().build()val tableEnv: StreamTableEnvironment = StreamTableEnvironment.create(env, settings)// 从一条流创建一张表,按照字段去定义,并指定事件时间的时间字段val dataTable: Table = tableEnv.fromDataStream(dataStream, 'id, 'temperature, 'ts.rowtime)// 按照时间开窗聚合统计val resultTable: Table = dataTable.window(Tumble over 10.seconds on 'ts as 'tw).groupBy('id, 'tw).select('id, 'id.count)val selectedStream: DataStream[(Boolean, (String, Long))] = resultTable.toRetractStream[(String, Long)]selectedStream.print()env.execute("table window test")}
9.3.2 关于 group by
如果了使用 groupby,table 转换为流的时候只能用 toRetractDstream:
val dataStream: DataStream[(Boolean, (String, Long))] = table.toRetractStream[(String,Long)]
toRetractDstream 得到的第一个 boolean 型字段标识 true 就是最新的数据 (Insert) , false 表示过期老数据 (Delete):
val dataStream: DataStream[(Boolean, (String, Long))] = table.toRetractStream[(String,Long)]dataStream.filter(_._1).print()
如果使用的 api 包括时间窗口, 那么窗口的字段必须出现在 groupBy 中:
val resultTable: Table = dataTable.window(Tumble over 10.seconds on 'ts as 'tw).groupBy('id, 'tw).select('id, 'id.count)
9.3.3 关于时间窗口
用到时间窗口,必须提前声明时间字段,如果是 processTime 直接在创建动态表时进行追加就可以:
val dataTable: Table = tableEnv.fromDataStream(dataStream, 'id, 'temperature, 'ps.proctime)
如果是 EventTime 要在创建动态表时声明:
val dataTable: Table = tableEnv.fromDataStream(dataStream, 'id, 'temperature, 'ts.rowtime)
滚动窗口可以使用 Tumble over 10000.millis on 来表示:
val resultTable: Table = dataTable.window(Tumble over 10.seconds on 'ts as 'tw).groupBy('id, 'tw).select('id, 'id.count)
9.4 SQL 如何编写
// 统计每10秒中每个传感器温度值的个数def main(args: Array[String]): Unit = {val env = StreamExecutionEnvironment.getExecutionEnvironmentenv.setParallelism(1)env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)val inputStream = env.readTextFile("..\\sensor.txt")val dataStream = inputStream.map(data => {val dataArray = data.split(",")SensorReading(dataArray(0).trim, dataArray(1).trim.toLong, dataArray(2).trim.toDouble)}).assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor[SensorReading](Time.seconds(1)) {override def extractTimestamp(element: SensorReading): Long = element.timestamp * 1000L})// 基于env创建 tableEnvval settings: EnvironmentSettings = EnvironmentSettings.newInstance().useOldPlanner().inStreamingMode().build()val tableEnv: StreamTableEnvironment = StreamTableEnvironment.create(env, settings)// 从一条流创建一张表,按照字段去定义,并指定事件时间的时间字段val dataTable: Table = tableEnv.fromDataStream(dataStream, 'id, 'temperature, 'ts.rowtime)// 直接写sql完成开窗统计val resultSqlTable: Table = tableEnv.sqlQuery("select id, count(id) from "+ dataTable + " group by id, tumble(ts, interval '15' second)")val selectedStream: DataStream[(Boolean, (String, Long))] = resultSqlTable.toRetractStream[(String, Long)]selectedStream.print()env.execute("table window test")}
