0 概述

提到事务,你肯定不陌生,和数据库打交道的时候,我们总是会用到事务。
最经典的例子就是转账,你要给朋友小王转100块钱,而此时你的银行卡只有100块钱。转账过程具体到程序里会有一系列的操作,比如查询余额、做加减法、更新余额等,这些操作必须保证是一体的,不然等程序查完之后,还没做减法之前,你这100块钱,完全可以借着这个时间差再查一次,然后再给另外一个朋友转账,如果银行这么整,不就乱了么?这时就要用到“事务”这个概念了。
简单来说,事务就是要保证一组数据库操作,要么全部成功,要么全部失败

在MySQL中,事务支持是在引擎层实现的
你现在知道,MySQL是一个支持多引擎的系统,但并不是所有的引擎都支持事务。比如MySQL原生的MyISAM引擎就不支持事务,这也是MyISAM被InnoDB取代的重要原因之一。今天的文章里,我将会以InnoDB为例,剖析MySQL在事务支持方面的特定实现,并基于原理给出相应的实践建议,希望这些案例能加深你对MySQL事务原理的理解。

1 隔离性与隔离级别

  • 隔离性概述

    • 提到事务,你肯定会想到 ACID(Atomicity、Consistency、Isolation、Durability,即原子性、一致性、隔离性、持久性),今天我们就来说说其中 I,也就是“隔离性”。
    • 当数据库上有多个事务同时执行的时候,就可能出现脏读(dirty read)、不可重复读(non-repeatable read)、幻读(phantom read)的问题,为了解决这些问题,就有了“隔离级别”的概念。
    • 在谈隔离级别之前,你首先要知道,你隔离得越严实,效率就会越低。因此很多时候,我们都要在二者之间寻找一个平衡点
  • 隔离级别

SQL 标准的事务隔离级别包括

  1. 读未提交(read uncommitted)

读未提交是指,一个事务还没提交时,它做的变更就能被别的事务看到

  1. 读提交(read committed)

读提交是指,一个事务提交之后,它做的变更才会被其他事务看到

  1. 可重复读(repeatable read)

可重复读是指,一个事务执行过程中看到的数据,总是跟这个事务在启动时看到的数据是一致的

  1. 串行化(serializable )

串行化,顾名思义是对于同一行记录,“写”会加“写锁”,“读”会加“读锁”。当出现读写锁冲突的时候,后访问的事务必须等前一个事务执行完成,才能继续执行。

  • Read View
    • 在实现上,数据库里面会创建一个视图,访问的时候以视图的逻辑结果为准。
    • 在“可重复读”隔离级别下,这个视图是在事务启动时创建的,整个事务存在期间都用这个视图。
    • 在“读提交”隔离级别下,这个视图是在每个 SQL 语句开始执行的时候创建的。
    • “读未提交”隔离级别下直接返回记录上的最新值,没有视图概念;
    • “串行化”隔离级别下直接用加锁的方式来避免并行访问。

2 可重复读的实现

  • undo log和MVCC
    • 在 MySQL 中,实际上每条记录在更新的时候都会同时记录一条回滚操作(undo log)。
    • 记录上的最新值,通过回滚操作,都可以得到前一个状态的值。假设一个值从 1 被按顺序改成了 2、3、4,在回滚日志里面就会有类似下面的记录。

image.png

  • 当前值是 4,但是在查询这条记录的时候,不同时刻启动的事务会有不同的 read-view。
  • 如图中看到的,在视图 A、B、C 里面,这一个记录的值分别是 1、2、4,同一条记录在系统中可以存在多个版本,就是数据库的多版本并发控制(MVCC)。对于 read-view A,要得到 1,就必须将当前值依次执行图中所有的回滚操作得到。
  • undo log的删除

    • 回滚日志总不能一直保留吧,什么时候删除呢?答案是,在不需要的时候才删除。也就是说,系统会判断,当没有事务再需要用到这些回滚日志时,回滚日志会被删除。
    • 什么时候才不需要了呢?就是当系统里没有比这个回滚日志更早的 read-view 的时候。
  • 长事务的弊端

    • 基于上面的说明,我们来讨论一下为什么建议你尽量不要使用长事务。
    • 长事务意味着系统里面会存在很老的事务视图。由于这些事务随时可能访问数据库里面的任何数据,所以这个事务提交之前,数据库里面它可能用到的回滚记录都必须保留,这就会导致大量占用存储空间。
    • 除了对回滚段的影响,长事务还占用锁资源,也可能拖垮整个库,这个我们会在后面讲锁的时候展开。

3 事务的启动方式

MySQL的事务启动方式有以下几种:

  1. 显式启动事务语句, begin 或 start transaction。配套的提交语句是 commit,回滚语句是 rollback。
  2. set autocommit=1
  • 这也是MySQL的默认情况。
  • MySQL中的每条指令都会自动开启一个事务,执行结束后也会自动提交。
  1. set autocommit=0
  • 这个命令会将这个线程的自动提交关掉。
  • 意味着如果你只执行一个 select 语句,这个事务就启动了,而且并不会自动提交。这个事务持续存在直到你主动执行 commit 或 rollback 语句,或者断开连接。

4 当前读与快照读

如果是可重复读隔离级别,事务 T 启动的时候会创建一个视图 read-view,之后事务 T 执行期间,即使有其他事务修改了数据,事务 T 看到的仍然跟在启动时看到的一样。也就是说,一个在可重复读隔离级别下执行的事务,好像与世无争,不受外界影响。
但是,一个事务要更新一行,如果刚好有另外一个事务拥有这一行的行锁,它又不能这么超然了,会被锁住,进入等待状态。问题是,既然进入了等待状态,那么等到这个事务自己获取到行锁要更新数据的时候,它读到的值又是什么呢?

下面是一个只有两行的表的初始化语句

  1. CREATE TABLE `t`
  2. (
  3. `id` int(11) NOT NULL,
  4. `k` int(11) DEFAULT NULL,
  5. PRIMARY KEY (`id`)
  6. ) ENGINE = InnoDB;
  7. insert into t(id, k)
  8. values (1, 1),
  9. (2, 2);

事务A、B、C的执行流程
image.png

begin/start transaction 命令并不是一个事务的起点,在执行到它们之后的第一个操作 InnoDB 表的语句,事务才真正启动。 如果你想要马上启动一个事务,可以使用 start transaction with consistent snapshot 这个命令

  • 第一种启动方式,一致性视图是在执行第一个快照读语句时创建的;
  • 第二种启动方式,一致性视图是在执行 start transaction with consistent snapshot 时创建的

在上述例子中,事务 C 没有显式地使用 begin/commit,表示这个 update 语句本身就是一个事务,语句完成的时候会自动提交。事务 B 在更新了行之后查询 ; 事务 A 在一个只读事务中查询,并且时间顺序上是在事务 B 的查询之后。

这时,如果我告诉你事务 B 查到的 k 的值是 3,而事务 A 查到的 k 的值是 1,你是不是感觉有点晕呢?

在 MySQL 里,有两个“视图”的概念:

  • 一个是 view。它是一个用查询语句定义的虚拟表,在调用的时候执行查询语句并生成结果。创建视图的语法是 create view … ,而它的查询方法与表一样。
  • 另一个是 InnoDB 在实现 MVCC 时用到的一致性读视图,即 consistent read view,用于支持 RC(Read Committed,读提交)和 RR(Repeatable Read,可重复读)隔离级别的实现

“快照”在 MVCC 里是怎么工作的?

快照实际上就是一致性视图,在start transaction with consistent snapshot启动事务时就会创建一个快照。
这时,你会说这看上去不太现实啊。如果一个库有 100G,那么我启动一个事务,MySQL 就要拷贝 100G 的数据出来,这个过程得多慢啊。可是,我平时的事务执行起来很快啊。
实际上,我们并不需要拷贝出这 100G 的数据。我们先来看看这个快照是怎么实现的:

  • InnoDB 里面每个事务有一个唯一的事务 ID,叫作 transaction id。它是在事务开始的时候向 InnoDB 的事务系统申请的,是按申请顺序严格递增的。
  • 每行数据也都是有多个版本的。每次事务更新数据的时候,都会生成一个新的数据版本,并且把 transaction id 赋值给这个数据版本的事务 ID,记为 row trx_id。同时,旧的数据版本要保留,并且在新的数据版本中,能够有信息可以直接拿到它。
  • 也就是说,数据表中的一行记录,其实可能有多个版本 (row),每个版本有自己的 row trx_id。如图 2 所示,就是一个记录被多个事务连续更新后的状态,即形成了一个版本链。

image.png
图中虚线框里是同一行数据的 4 个版本,当前最新版本是 V4,k 的值是 22,它是被 transaction id 为 25 的事务更新的,因此它的 row trx_id 也是 25。
你可能会问,前面的文章不是说,语句更新会生成 undo log(回滚日志)吗?那么,undo log 在哪呢?实际上,图 2 中的三个虚线箭头,就是 undo log
V1、V2、V3 并不是物理上真实存在的,而是每次需要的时候根据当前版本和 undo log 计算出来的。比如,需要 V2 的时候,就是通过 V4 依次执行 U3、U2 算出来。

明白了多版本和 row trx_id 的概念后,我们再来想一下,InnoDB 是怎么定义那个“100G”的快照的。
按照可重复读的定义,一个事务启动的时候,能够看到所有已经提交的事务结果。但是之后,这个事务执行期间,其他事务的更新对它不可见。因此,一个事务只需要在启动的时候声明说,“以我启动的时刻为准,如果一个数据版本是在我启动之前生成的,就认;如果是我启动以后才生成的,我就不认,我必须要找到它的上一个版本”。
当然,如果“上一个版本”也不可见,那就得继续往前找。还有,如果是这个事务自己更新的数据,它自己还是要认的。

在实现上, InnoDB 为每个事务构造了一个数组,用来保存这个事务启动瞬间,当前正在“活跃”的所有事务 ID。“活跃”指的就是,启动了但还没提交。
当前正在活跃的事务 ID 的最小值记为低水位,当前系统里面已经创建过的事务 ID 的最大值加 1 记为高水位。这个视图数组(活跃事务的ID)和高水位,就组成了当前事务的一致性视图(read-view)
image.png
而数据版本的可见性规则,就是基于数据的 row trx_id 和这个一致性视图的对比结果得到的
这样,对于当前事务的启动瞬间来说,一个数据版本的 row trx_id,有以下几种可能:

  1. 如果落在绿色部分,表示这个版本是已提交的事务或者是当前事务自己生成的,这个数据是可见的;
  2. 如果落在红色部分,表示这个版本是由将来启动的事务生成的,是肯定不可见的;
  3. 如果落在黄色部分,那就包括两种情况
    • a. 若 row trx_id 在数组中,表示这个版本是由还没提交的事务生成的,不可见;
    • b. 若 row trx_id 不在数组中,表示这个版本是已经提交了的事务生成的,可见。

总结来说,就是:如果row trx_id小于高水位,且不在视图数组中,那么该数据对当前事务是可见的,否则是不可见的

你看,有了这个一致性视图之后,系统里面随后发生的更新,是不是就跟这个事务看到的内容无关了呢?所以你现在知道了,InnoDB 利用了“所有数据都有多个版本”的这个特性,实现了“秒级创建快照”的能力,因为创建快照只与事务id有关,与数据无关。

接下来,我们继续看一下之前提到的例子,分析下事务 A 的语句返回的结果,为什么是 k=1。
image.png
这里,我们不妨做如下假设:

  1. 事务 A 开始前,系统里面只有一个活跃事务 ID 是 99;
  2. 事务 A、B、C 的版本号分别是 100、101、102,且当前系统里只有这四个事务;
  3. 三个事务开始前,(1,1)这一行数据的 row trx_id 是 90。这样,事务 A 的视图数组就是[99,100], 事务 B 的视图数组是[99,100,101], 事务 C 的视图数组是[99,100,101,102]。为了简化分析,我先把其他干扰语句去掉,只画出跟事务 A 查询逻辑有关的操作:

image.png

  1. 从图中可以看到,第一个有效更新是事务 C,把数据从 (1,1) 改成了 (1,2)。这时候,这个数据的最新版本的 row trx_id 是 102,而 90 这个版本已经成为了历史版本。
  2. 第二个有效更新是事务 B,把数据从 (1,2) 改成了 (1,3)。这时候,这个数据的最新版本(即 row trx_id)是 101,而 102 又成为了历史版本。
  3. 你可能注意到了,在事务 A 查询的时候,其实事务 B 还没有提交,但是它生成的 (1,3) 这个版本已经变成当前版本了。但这个版本对事务 A 必须是不可见的,否则就变成脏读了。好,现在事务 A 要来读数据了,它的视图数组是[99,100]。当然了,读数据都是从当前版本读起的。所以,事务 A 查询语句的读数据流程是这样的:
    1. 找到 (1,3) 的时候,判断出 row trx_id=101,比高水位大,处于红色区域,不可见;
    2. 接着,找到上一个历史版本,一看 row trx_id=102,比高水位大,处于红色区域,不可见;
    3. 再往前找,终于找到了(1,1),它的 row trx_id=90,比低水位小,处于绿色区域,可见。
  4. 这样执行下来,虽然期间这一行数据被修改过,但是事务 A 不论在什么时候查询,看到这行数据的结果都是一致的,所以我们称之为一致性读。

这个判断规则是从代码逻辑直接转译过来的,但是正如你所见,用于人肉分析可见性很麻烦。所以,我来给你翻译一下。一个数据版本,对于一个事务视图来说,除了自己的更新总是可见以外,有三种情况:

  • 版本未提交,不可见;
  • 版本已提交,但是是在视图创建后提交的,不可见;
  • 版本已提交,而且是在视图创建前提交的,可见。

现在,我们用这个规则来判断事务A的查询结果,事务 A 的查询语句的视图数组是在事务 A 启动的时候生成的,这时候:(1,3) 还没提交,属于情况 1,不可见;(1,2) 虽然提交了,但是是在视图数组创建之后提交的,属于情况 2,不可见;(1,1) 是在视图数组创建之前提交的,可见。你看,去掉数字对比后,只用时间先后顺序来判断,分析起来是不是轻松多了。所以,后面我们就都用这个规则来分析。

更新逻辑

细心的同学可能有疑问了:事务 B 的 update 语句,如果按照一致性读,好像结果不对哦?你看图 5 中,事务 B 的视图数组是先生成的,之后事务 C 才提交,不是应该看不见 (1,2) 吗,怎么能算出 (1,3) 来?
image.png
是的,如果事务 B 在更新之前查询一次数据,这个查询返回的 k 的值确实是 1。但是,当它要去更新数据的时候,就不能再在历史版本上更新了,否则事务 C 的更新就丢失了
因此,事务 B 此时的 set k=k+1 是在(1,2)的基础上进行的操作。所以,这里就用到了这样一条规则:更新数据都是先读后写的,而这个读,只能读当前的值,称为“当前读”(current read)
因此,在更新的时候,当前读拿到的数据是 (1,2),更新后生成了新版本的数据 (1,3),这个新版本的 row trx_id 是 101。所以,在执行事务 B 查询语句的时候,一看自己的版本号是 101,最新数据的版本号也是 101,是自己的更新,可以直接使用,所以查询得到的 k 的值是 3。

这里我们提到了一个概念,叫作当前读。其实,除了 update 语句外,select 语句如果加锁,也是当前读。所以,如果把事务 A 的查询语句 select * from t where id=1 修改一下,加上 lock in share mode 或 for update,也都可以读到版本号是 101 的数据,返回的 k 的值是 3
下面这两个 select 语句,就是分别加了读锁(S 锁,共享锁)和写锁(X 锁,排他锁)。

  1. mysql> select k from t where id=1 lock in share mode;
  2. mysql> select k from t where id=1 for update;

再往前一步,假设事务 C 不是马上提交的,而是变成了下面的事务 C’,会怎么样呢?
image.png
事务 C’的不同是,更新后并没有马上提交,在它提交前,事务 B 的更新语句先发起了。前面说过了,虽然事务 C’还没提交,但是 (1,2) 这个版本也已经生成了,并且是当前的最新版本。那么,事务 B 的更新语句会怎么处理呢?这时候,我们在上一篇文章中提到的“两阶段锁协议”就要上场了。事务 C’没提交,也就是说 (1,2) 这个版本上的写锁还没释放。而事务 B 是当前读,必须要读最新版本,而且必须加锁,因此就被锁住了,必须等到事务 C’释放这个锁,才能继续它的当前读。
image.png
到这里,我们把一致性读、当前读和行锁就串起来了。

现在,我们再回到文章开头的问题:事务的可重复读的能力是怎么实现的?

  • 可重复读的核心就是一致性读(consistent read);
  • 事务更新数据的时候,只能用当前读。如果当前的记录的行锁被其他事务占用的话,就需要进入锁等待。
  • 读提交的逻辑和可重复读的逻辑类似,它们最主要的区别是:在可重复读隔离级别下,只需要在事务开始的时候创建一致性视图,之后事务里的其他查询都共用这个一致性视图;在读提交隔离级别下,每一个语句执行前都会重新算出一个新的视图。

那么,我们再看一下,在读提交隔离级别下,事务 A 和事务 B 的查询语句查到的 k,分别应该是多少呢?

这里需要说明一下,“start transaction with consistent snapshot; ”的意思是从这个语句开始,创建一个持续整个事务的一致性快照。所以,在读提交隔离级别下,这个用法就没意义了,等效于普通的 start transaction。

下面是读提交时的状态图,可以看到这两个查询语句的创建视图数组的时机发生了变化,就是图中的 read view 框。(注意:这里,我们用的还是事务 C 的逻辑直接提交,而不是事务 C’)
image.png
这时,事务 A 的查询语句的视图数组是在执行这个语句的时候创建的,时序上 (1,2)、(1,3) 的生成时间都在创建这个视图数组的时刻之前。但是,在这个时刻:(1,3) 还没提交,属于情况 1,不可见;(1,2) 提交了,属于情况 3,可见。所以,这时候事务 A 查询语句返回的是 k=2。显然地,事务 B 查询结果 k=3。

InnoDB 的行数据有多个版本,每个数据版本有自己的 row trx_id,每个事务或者语句有自己的一致性视图。普通查询语句是一致性读,一致性读会根据 row trx_id 和一致性视图确定数据版本的可见性。

  • 对于可重复读,查询只承认在事务启动前就已经提交完成的数据;
  • 对于读提交,查询只承认在语句启动前就已经提交完成的数据;
  • 当前读,总是读取已经提交完成的最新版本。