optimizer**.**zero_grad() # 上次梯度清0loss**.**backward() # 求这次梯度optimizer**.**step() # 更新参数
从SGD的实现代码可以看出,梯度的获取是从grad属性中获取,step()方法就是从grad获取梯度更新参数。
疑问:backward方法应该会覆盖上次的grad,为什么需要optimizer实行zero_grad 来清零梯度?
class SGD(Optimizer):def __init__(self, params, lr=required, momentum=0, dampening=0,weight_decay=0, nesterov=False):if lr is not required and lr < 0.0:raise ValueError("Invalid learning rate: {}".format(lr))if momentum < 0.0:raise ValueError("Invalid momentum value: {}".format(momentum))if weight_decay < 0.0:raise ValueError("Invalid weight_decay value: {}".format(weight_decay))defaults = dict(lr=lr, momentum=momentum, dampening=dampening,weight_decay=weight_decay, nesterov=nesterov)if nesterov and (momentum <= 0 or dampening != 0):raise ValueError("Nesterov momentum requires a momentum and zero dampening")super(SGD, self).__init__(params, defaults)def __setstate__(self, state):super(SGD, self).__setstate__(state)for group in self.param_groups:group.setdefault('nesterov', False)def step(self, closure=None):"""Performs a single optimization step.Arguments:closure (callable, optional): A closure that reevaluates the modeland returns the loss."""loss = Noneif closure is not None:loss = closure()for group in self.param_groups:weight_decay = group['weight_decay']momentum = group['momentum']dampening = group['dampening']nesterov = group['nesterov']for p in group['params']:if p.grad is None:continued_p = p.grad.dataif weight_decay != 0:d_p.add_(weight_decay, p.data)if momentum != 0:param_state = self.state[p]if 'momentum_buffer' not in param_state:buf = param_state['momentum_buffer'] = torch.clone(d_p).detach()else:buf = param_state['momentum_buffer']buf.mul_(momentum).add_(1 - dampening, d_p)if nesterov:d_p = d_p.add(momentum, buf)else:d_p = bufp.data.add_(-group['lr'], d_p)return loss
