矩阵 | Matrices
\begin{matrix}1 & x & x^2 \\1 & y & y^2 \\1 & z & z^2 \\\end{matrix}
\begin{pmatrix}1&2\\3&4\\ \end{pmatrix}
\begin{bmatrix}1&2\\3&4\\ \end{bmatrix}
\begin{Bmatrix}1&2\\3&4\\ \end{Bmatrix}
\begin{vmatrix}1&2\\3&4\\ \end{vmatrix}
\begin{Vmatrix}1&2\\3&4\\ \end{Vmatrix}
\begin{pmatrix}1 & a_1 & a_1^2 & \cdots & a_1^n \\1 & a_2 & a_2^2 & \cdots & a_2^n \\\vdots & \vdots& \vdots & \ddots & \vdots \\1 & a_m & a_m^2 & \cdots & a_m^n\end{pmatrix}
\left[\begin{array}{cc|c}1&2&3\\4&5&6\end{array}\right]
\begin{pmatrix}a & b\\c & d\\\hline1 & 0\\0 & 1\end{pmatrix}
$\bigl( \begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \bigr)$
对齐方程 | Aligned equations
\begin{align}\sqrt{37} & = \sqrt{\frac{73^2-1}{12^2}} \\& = \sqrt{\frac{73^2}{12^2}\cdot\frac{73^2-1}{73^2}} \\& = \sqrt{\frac{73^2}{12^2}}\sqrt{\frac{73^2-1}{73^2}} \\& = \frac{73}{12}\sqrt{1 - \frac{1}{73^2}} \\& \approx \frac{73}{12}\left(1 - \frac{1}{2\cdot73^2}\right)\end{align}
\begin{align} f(x)&=\left(x^3\right)+\left(x^3+x^2+x^1\right)+\left(x^3+x^2\right)\\ f'(x)&=\left(3x^2+2x+1\right)+\left(3x^2+2x\right)\\ f''(x)&=\left(6x+2\right)\\ \end{align}
分段函数 | piecewise functions
f(n) =\begin{cases}n/2, & \text{if $n$ is even} \\3n+1, & \text{if $n$ is odd}\end{cases}
\left.\begin{array}{l}\text{if $n$ is even:}&n/2\\\text{if $n$ is odd:}&3n+1\end{array}\right\}=f(n)
f(n) =\begin{cases}\frac{n}{2}, & \text{if $n$ is even} \\[2ex]3n+1, & \text{if $n$ is odd}\end{cases}
数组 | Arrays
\begin{array}{c|lcr}n & \text{Left} & \text{Center} & \text{Right} \\\hline1 & 0.24 & 1 & 125 \\2 & -1 & 189 & -8 \\3 & -20 & 2000 & 1+10i\end{array}
% outer vertical array of arrays\begin{array}{c}% inner horizontal array of arrays\begin{array}{cc}% inner array of minimum values\begin{array}{c|cccc}\text{min} & 0 & 1 & 2 & 3\\\hline0 & 0 & 0 & 0 & 0\\1 & 0 & 1 & 1 & 1\\2 & 0 & 1 & 2 & 2\\3 & 0 & 1 & 2 & 3\end{array}&% inner array of maximum values\begin{array}{c|cccc}\text{max}&0&1&2&3\\\hline0 & 0 & 1 & 2 & 3\\1 & 1 & 1 & 2 & 3\\2 & 2 & 2 & 2 & 3\\3 & 3 & 3 & 3 & 3\end{array}\end{array}\\% inner array of delta values\begin{array}{c|cccc}\Delta&0&1&2&3\\\hline0 & 0 & 1 & 2 & 3\\1 & 1 & 0 & 1 & 2\\2 & 2 & 1 & 0 & 1\\3 & 3 & 2 & 1 & 0\end{array}\end{array}
\begin{array}{ll} \hfill\mathrm{Bad}\hfill & \hfill\mathrm{Better}\hfill \\ \hline \\ e^{i\frac{\pi}2} \quad e^{\frac{i\pi}2}& e^{i\pi/2} \\ \int_{-\frac\pi2}^\frac\pi2 \sin x\,dx & \int_{-\pi/2}^{\pi/2}\sin x\,dx \\ \end{array}
方程组 | System of equations
\left\{\begin{array}{c}a_1x+b_1y+c_1z=d_1 \\a_2x+b_2y+c_2z=d_2 \\a_3x+b_3y+c_3z=d_3\end{array}\right.
\begin{cases}a_1x+b_1y+c_1z=d_1 \\a_2x+b_2y+c_2z=d_2 \\a_3x+b_3y+c_3z=d_3\end{cases}
\left\{\begin{aligned}a_1x+b_1y+c_1z &=d_1+e_1 \\a_2x+b_2y&=d_2 \\a_3x+b_3y+c_3z &=d_3\end{aligned}\right.
\left\{\begin{array}{ll}a_1x+b_1y+c_1z &=d_1+e_1 \\a_2x+b_2y &=d_2 \\a_3x+b_3y+c_3z &=d_3\end{array}\right.
\begin{cases}a_1x+b_1y+c_1z=\frac{p_1}{q_1} \\[2ex]a_2x+b_2y+c_2z=\frac{p_2}{q_2} \\[2ex]a_3x+b_3y+c_3z=\frac{p_3}{q_3}\end{cases}
\begin{cases}a_1x+b_1y+c_1z=\frac{p_1}{q_1} \\a_2x+b_2y+c_2z=\frac{p_2}{q_2} \\a_3x+b_3y+c_3z=\frac{p_3}{q_3}\end{cases}
\left\{ \begin{array}{l}0 = c_x-a_{x0}-d_{x0}\dfrac{(c_x-a_{x0})\cdot d_{x0}}{\|d_{x0}\|^2} + c_x-a_{x1}-d_{x1}\dfrac{(c_x-a_{x1})\cdot d_{x1}}{\|d_{x1}\|^2} \\[2ex]0 = c_y-a_{y0}-d_{y0}\dfrac{(c_y-a_{y0})\cdot d_{y0}}{\|d_{y0}\|^2} + c_y-a_{y1}-d_{y1}\dfrac{(c_y-a_{y1})\cdot d_{y1}}{\|d_{y1}\|^2} \end{array} \right.
颜色 | Colors
\begin{array}{|rc|}\hline\verb+\color{black}{text}+ & \color{black}{text} \\\verb+\color{gray}{text}+ & \color{gray}{text} \\\verb+\color{silver}{text}+ & \color{silver}{text} \\\verb+\color{white}{text}+ & \color{white}{text} \\\hline\verb+\color{maroon}{text}+ & \color{maroon}{text} \\\verb+\color{red}{text}+ & \color{red}{text} \\\verb+\color{yellow}{text}+ & \color{yellow}{text} \\\verb+\color{lime}{text}+ & \color{lime}{text} \\\verb+\color{olive}{text}+ & \color{olive}{text} \\\verb+\color{green}{text}+ & \color{green}{text} \\\verb+\color{teal}{text}+ & \color{teal}{text} \\\verb+\color{aqua}{text}+ & \color{aqua}{text} \\\verb+\color{blue}{text}+ & \color{blue}{text} \\\verb+\color{navy}{text}+ & \color{navy}{text} \\\verb+\color{purple}{text}+ & \color{purple}{text} \\\verb+\color{fuchsia}{text}+ & \color{magenta}{text} \\\hline\end{array}
\begin{array}{|rc|}\hline\verb+\color{black}{text}+ & \color{black}{text} \\\verb+\color{gray}{text}+ & \color{gray}{text} \\\verb+\color{silver}{text}+ & \color{silver}{text} \\\verb+\color{white}{text}+ & \color{white}{text} \\\hline\verb+\color{maroon}{text}+ & \color{maroon}{text} \\\verb+\color{red}{text}+ & \color{red}{text} \\\verb+\color{yellow}{text}+ & \color{yellow}{text} \\\verb+\color{lime}{text}+ & \color{lime}{text} \\\verb+\color{olive}{text}+ & \color{olive}{text} \\\verb+\color{green}{text}+ & \color{green}{text} \\\verb+\color{teal}{text}+ & \color{teal}{text} \\\verb+\color{aqua}{text}+ & \color{aqua}{text} \\\verb+\color{blue}{text}+ & \color{blue}{text} \\\verb+\color{navy}{text}+ & \color{navy}{text} \\\verb+\color{purple}{text}+ & \color{purple}{text} \\\verb+\color{fuchsia}{text}+ & \color{magenta}{text} \\\hline\end{array}
交换图 | Commutative diagrams
\begin{CD}A @>a>> B\\@V b V V= @VV c V\\C @>>d> D\end{CD}
\begin{CD}A @>>> B @>{\text{very long label}}>> C \\@. @AAA @| \\D @= E @<<< F\end{CD}
\begin{CD}RCOHR'SO_3Na @>{\text{Hydrolysis,$\Delta, Dil.HCl$}}>> (RCOR')+NaCl+SO_2+ H_2O\end{CD}
持续分数 | Continued fractions
x = a_0 + \cfrac{1^2}{a_1+ \cfrac{2^2}{a_2+ \cfrac{3^2}{a_3 + \cfrac{4^4}{a_4 + \cdots}}}}
x = a_0 + \frac{1^2}{a_1+ \frac{2^2}{a_2+ \frac{3^2}{a_3 + \frac{4^4}{a_4 + \cdots}}}}
x = a_0 + \frac{1^2}{a_1+}\frac{2^2}{a_2+}\frac{3^2}{a_3 +} \frac{4^4}{a_4 +} \cdots
\cfrac{a_{1}}{b_{1}+\cfrac{a_{2}}{b_{2}+\cfrac{a_{3}}{b_{3}+\ddots }}}= {\genfrac{}{}{}{}{a_1}{b_1}} {\genfrac{}{}{0pt}{}{}{+}} {\genfrac{}{}{}{}{a_2}{b_2}} {\genfrac{}{}{0pt}{}{}{+}} {\genfrac{}{}{}{}{a_3}{b_3}} {\genfrac{}{}{0pt}{}{}{+\dots}}
\underset{j=1}{\overset{\infty}{\LARGE\mathrm K}}\frac{a_j}{b_j}=\cfrac{a_1}{b_1+\cfrac{a_2}{b_2+\cfrac{a_3}{b_3+\ddots}}}.
\mathop{\LARGE\mathrm K}_{i=1}^\infty \frac{a_i}{b_i}
大括号 | Big braces
f\left(\left[\frac{1+\left\{x,y\right\}}{\left(\frac{x}{y}+\frac{y}{x}\right)\left(u+1\right)}+a\right]^{3/2}\right)
\begin{aligned}a=&\left(1+2+3+ \cdots \right. \\& \cdots+ \left. \infty-2+\infty-1+\infty\right)\end{aligned}
\left\langleq\middle\|\frac{\frac{x}{y}}{\frac{u}{v}}\middle|p\right\rangle
高亮 | Highlighting equation
\bbox[yellow]{e^x=\lim_{n\to\infty} \left( 1+\frac{x}{n} \right)^n\qquad (1)}
\bbox[yellow,5px]{e^x=\lim_{n\to\infty} \left( 1+\frac{x}{n} \right)^n\qquad (1)}
\bbox[5px,border:2px solid red]{e^x=\lim_{n\to\infty} \left( 1+\frac{x}{n} \right)^n\qquad (2)}
\bbox[yellow,5px,border:2px solid red]{e^x=\lim_{n\to\infty} \left( 1+\frac{x}{n} \right)^n\qquad (1)}
Pack of cards
\spadesuit\quad\heartsuit\quad\diamondsuit\quad\clubsuit
\color{red}{\heartsuit}\quad\color{red}{\diamondsuit}
♠\quad♡\quad♢\quad♣\\♤\quad♥\quad♦\quad♧
长除法 | Long division
\require{enclose}\begin{array}{r}13 \\[-3pt]4 \enclose{longdiv}{52} \\[-3pt]\underline{4}\phantom{2} \\[-3pt]12 \\[-3pt]\underline{12}\end{array}
\begin{array}{c|rrrr}& x^3 & x^2 & x^1 & x^0\\ & 1 & -6 & 11 & -6\\ {\color{red}1} & \downarrow & 1 & -5 & 6\\ \hline & 1 & -5 & 6 & |\phantom{-} {\color{blue}0} \end{array}
x^3−6x^2+11x−6=(x−{\color{red}1})(x^2−5x+6)+{\color{blue}0}
Degree symbol
\begin{array} \\\text{45^\text{o}} & \text{renders as} & 45^\text{o} \\\text{45^o} & \text{renders as} & 45^o \\\text{45^\circ} & \text{renders as} & 45^\circ \\\text{90°} & \text{renders as} & 90° & \text{Using keyboard entry of symbol}%% Use the following line as a template for additional entries%% \text{} & \text{renders as} & \\\end{array}
其他 | Others
\sum_{n=1}^\infty \frac{1}{n^2} \to\textstyle \sum_{n=1}^\infty \frac{1}{n^2} \to\displaystyle \sum_{n=1}^\infty \frac{1}{n^2}
Compare versus
能量守恒
e=mc^2 \tag{1}\label{eq1}
\begin{equation}\begin{aligned}a &= b + c \\&= d + e + f + g \\&= h + i\end{aligned}\end{equation}\tag{2}\label{eq2}
\begin{align}a &= b + c \tag{3}\label{eq3} \\x &= yz \tag{4}\label{eq4}\\l &= m - n \tag{5}\label{eq5}\end{align}
54\,321.123\,45
\left.\mathrm{m}\middle/\mathrm{s}^2\right.
\mu_0=4\pi\times10^{-7} \ \left.\mathrm{\mathrm{T}\!\cdot\!\mathrm{m}}\middle/\mathrm{A}\right.
\begin{array}{rrrrrr|r}& x_1 & x_2 & s_1 & s_2 & s_3 & \\ \hlines_1 & 0 & 1 & 1 & 0 & 0 & 8 \\s_2 & 1 & -1 & 0 & 1 & 0 & 4 \\s_3 & 1 & 1 & 0 & 0 & 1 & 12 \\ \hline& -1 & -1 & 0 & 0 & 0 & 0\end{array}
\begin{array}{rrrrrrr|rr}& x_1 & x_2 & s_1 & s_2 & s_3 & w & & \text{ratio} \\ \hlines_1 & 0 & 1 & 1 & 0 & 0 & 0 & 8 & - \\w & 1^* & -1 & 0 & -1 & 0 & 1 & 4 & 4 \\s_3 & 1 & 1 & 0 & 0 & 1 & 0 & 12 & 12 \\ \hdashline& 1 & -1 & 0 & -1 & 0 & 0 & 4 & \\ \hlines_1 & 0 & 1 & 1 & 0 & 0 & 0 & 8 & \\x_1 & 1 & -1 & 0 & -1 & 0 & 1 & 4 & \\s_3 & 0 & 2 & 0 & 2 & 1 & -1 & 8 & \\ \hdashline& 0 & 0 & 0 & 0 & 0 & -1 & 0 &\end{array}
\begin{array}{rrrrrrrr|r}& x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & \\ \hlinex_4 & 0 & -3 & 7 & 1 & 0 & 0 & 2 & 2M -4 \\x_5 & 0 & -9 & 0 & 0 & 1 & 0 & -1 & -M -3 \\x_6 & 0 & 6 & -1 & 0 & 0 & 1 & -4^* & -4M +8 \\x_1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & M \\ \hline& 0 & 1 & 1 & 0 & 0 & 0 & 2 & 2M \\\text{ratio} & & & 1 & & & & 1/2 &\end{array}
\begin{array}{rrrrrrr|r}& x_1 & x_2 & x_3 & s_1 & s_2 & s_3 & \\ \hlines_1 & -2 & 0 & -2 & 1 & 0 & 0 & -60 \\s_2 & -2 & -4^* & -5 & 0 & 1 & 0 & -70 \\s_3 & 0 & -3 & -1 & 0 & 0 & 1 & -27 \\ \hdashline& 8 & 10 & 25 & 0 & 0 & 0 & 0 \\\text{ratio} & -4 & -5/2 & -5 & & & & \\ \hlines_1 & -2^* & 0 & -2 & 1 & 0 & 0 & -60 \\x_2 & 1/2 & 1 & 5/4 & 0 & -1/4 & 0 & 35/2 \\s_3 & 3/2 & 0 & 11/4 & 0 & -3/4 & 1 & 51/2 \\ \hdashline& 3 & 0 & 25/2 & 0 & 5/2 & 0 & -175 \\\text{ratio} & -3/2 & & 25/4 & & & & \\ \hlinex_1 & 1 & 0 & 1 & -1/2 & 0 & 0 & 30 \\x_2 & 0 & 1 & 3/4 & 1/4 & -1/4 & 0 & 5/2 \\s_3 & 0 & 0 & 5/4 & 3/4 & -3/4^* & 1 & -39/2 \\ \hdashline& 0 & 0 & 19/2 & 3/2 & 5/2 & 0 & -265 \\\text{ratio} & & & & & \dots & & \\ \hlinex_1 & 1 & 0 & 1 & -1/2 & 0 & 0 & 30 \\x_2 & 0 & 1 & 1/3 & 0 & 0 & -1/3 & 9 \\s_2 & 0 & 0 & -5/3 & -1 & 1 & -4/3 & 26 \\ \hdashline& 0 & 0 & 41/3 & 4 & 0 & 10/3 & -330\end{array}
\require{extpfeil} % produce extensible horizontal arrows\begin{array}{ccc} % arrange LPPs% first row% first LPP\begin{array}{ll}\max & z = c^T x \\\text{s.t.} & A x \le b \\& x \ge 0\end{array}& \xtofrom{\text{duality}} &% second LPP\begin{array}{ll}\min & v = b^T y \\\text{s.t.} & A^T y \ge c \\& y \ge 0\end{array} \\({\cal PC}) & & ({\cal DC}) \\\text{add } {\Large \downharpoonleft} \text{slack var} & & \text{minus } {\Large \downharpoonright} \text{surplus var}\\ % Change to your favorite arrow style%% second row% third LPP\begin{array}{ll}\max & z = c^T x \\\text{s.t.} & A x + s = b \\& x,s \ge 0\end{array}& \xtofrom[\text{some steps skipped}]{\text{duality}} &% fourth LPP\begin{array}{ll}\min & v = b^T y \\\text{s.t.} & A^T y - t = c \\& y,t \ge 0\end{array} \\({\cal PS}) & & ({\cal DS})%\end{array}
\Large\LaTeX
\sum_{i=0}^n i^2 = \frac{(n^2+n)(2n+1)}{6}
\Biggl(\biggl(\Bigl(\bigl((egg)\bigr)\Bigr)\biggr)\Biggr)
字体 | Fonts
\mathbb{CHNQRZ}
\mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ}
\mathbf{abcdefghijklmnopqrstuvwxyz}
\mathit{ABCDEFGHIJKLMNOPQRSTUVWXYZ}
\mathit{abcdefghijklmnopqrstuvwxyz}
\pmb{ABCDEFGHIJKLMNOPQRSTUVWXYZ,abcdefghijklmnopqrstuvwxyz}
\mathtt{ABCDEFGHIJKLMNOPQRSTUVWXYZ,abcdefghijklmnopqrstuvwxyz}
\mathrm{ABCDEFGHIJKLMNOPQRSTUVWXYZ,abcdefghijklmnopqrstuvwxyz}
\mathsf{ABCDEFGHIJKLMNOPQRSTUVWXYZ,abcdefghijklmnopqrstuvwxyz}
\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ,abcdefghijklmnopqrstuvwxyz}
\mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ,abcdefghijklmnopqrstuvwxyz}
\mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \mathfrak{abcdefghijklmnopqrstuvwxyz}
